[1] |
Zhang M, Liu Q, Meng H, et al. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets[J]. Signal Transduct Target Ther, 2024, 9(1): 12. DOI: 10.1038/s41392-023-01688-x.
|
[2] |
Thapa K, Singh TG, Kaur A. Targeting ferroptosis in ischemia/reperfusion renal injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(11): 1331-1341. DOI: 10.1007/s00210-022-02277-5.
|
[3] |
Liu C, Chen K, Wang H, et al. Gastrin attenuates renal ischemia/reperfusion injury by a PI3K/Akt/bad-mediated anti-apoptosis signaling[J]. Front Pharmacol, 2020, 11: 540479. DOI: 10.3389/fphar.2020.540479.
|
[4] |
Xia W, Li Y, Wu M, et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation[J]. Cell Death Dis, 2021, 12(2): 139. DOI: 10.1038/s41419-021-03431-2.
|
[5] |
Ding C, Ding X, Zheng J, et al. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury[J]. Cell Death Dis, 2020, 11(10): 929. DOI: 10.1038/s41419-020-03135-z.
|
[6] |
Ansari J, Gavins FNE. Ischemia-reperfusion injury in sickle cell disease: from basics to therapeutics[J]. Am J Pathol, 2019, 189(4): 706-718. DOI: 10.1016/j.ajpath.2018.12.012.
|
[7] |
Chen W, Wang L, Liang P, et al. Reducing ischemic kidney injury through application of a synchronization modulation electric field to maintain Na+/K+-ATPase functions[J]. Sci Transl Med, 2022, 14(635): eabj4906. DOI: 10.1126/scitranslmed.abj4906.
|
[8] |
Kalogeris T, Baines CP, Krenz M, et al. Ischemia/Reperfusion [J]. Compr Physiol. 2016 Dec 6; 7(1):113-170. DOI: 10.1002/cphy.c160006.
|
[9] |
Chen X, Jiang J, He B, et al. Piezo1 aggravates ischemia/reperfusion-induced acute kidney injury by Ca2+-dependent calpain/HIF-1α/Notch signaling[J]. Ren Fail, 2025, 47(1): 2447801. DOI: 10.1080/0886022X.2024.2447801.
|
[10] |
Wang JH, Mao HB, Hu JB, et al. Engineering of phosphatidylserine-targeting ROS-responsive polymeric prodrug for the repair of ischemia-reperfusion-induced acute kidney injury[J]. J Control Release, 2024, 376: 1100-1114. DOI: 10.1016/j.jconrel.2024.10.063.
|
[11] |
Pefanis A, Ierino FL, Murphy JM, et al. Regulated necrosis in kidney ischemia-reperfusion injury[J]. Kidney Int, 2019, 96(2): 291-301. DOI: 10.1016/j.kint.2019.02.009.
|
[12] |
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death[J]. Physiol Rev, 2007, 87(1): 99-163. DOI: 10.1152/physrev.00013.2006.
|
[13] |
Daemen MA, van 't Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation[J]. J Clin Invest, 1999, 104(5): 541-549. DOI: 10.1172/JCI6974.
|
[14] |
Ke Y, Yan H, Chen L, et al. Apoptosis repressor with caspase recruitment domain deficiency accelerates ischemia/reperfusion (I/R)-induced acute kidney injury by suppressing inflammation and apoptosis: The role of AKT/mTOR signaling[J]. Biomed Pharmacother, 2019, 112: 108681. DOI: 10.1016/j.biopha.2019.108681.
|
[15] |
Szeto HH, Liu S, Soong Y, et al. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1 β and IL-18 and arrests CKD[J]. J Am Soc Nephrol, 2017, 28(5): 1437-1449. DOI: 10.1681/ASN.2016070761.
|
[16] |
Hu S, Zhang Y, Zhang M, et al. Aloperine protects mice against ischemia-reperfusion (IR)-induced renal injury by regulating PI3K/AKT/mTOR signaling and AP-1 activity[J]. Mol Med, 2016, 21(1): 912-923. DOI: 10.2119/molmed.2015.00056.
|
[17] |
Wang J, Ma R, Wang Y, et al. rhMYDGF alleviates I/R-induced kidney injury by inhibiting inflammation and apoptosis via the Akt pathway[J]. Transplantation, 2023, 107(8): 1729-1739. DOI: 10.1097/TP.0000000000004497.
|
[18] |
Xiao JJ, Liu Q, Li Y, et al. Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway[J]. Cell Death Dis, 2022, 13(9): 774. DOI: 10.1038/s41419-022-05220-x.
|
[19] |
Qiao X, Chen X, Wu D, et al. Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury[J]. J Gerontol A Biol Sci Med Sci, 2005, 60(7): 830-839. DOI: 10.1093/gerona/60.7.830.
|
[20] |
Fu ZJ, Wang ZY, Xu L, et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury[J]. Redox Biol, 2020, 36: 101671. DOI: 10.1016/j.redox.2020.101671.
|
[21] |
Isaka Y, Suzuki C, Abe T, et al. Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms[J]. Transplant Proc, 2009, 41(1): 52-54. DOI: 10.1016/j.transproceed.2008.10.026.
|
[22] |
Abogresha NM, Greish SM, Abdelaziz EZ, et al. Remote effect of kidney ischemia-reperfusion injury on pancreas: role of oxidative stress and mitochondrial apoptosis[J]. Arch Med Sci, 2016, 12(2): 252-262. DOI: 10.5114/aoms.2015.48130.
|
[23] |
Ozgen ZE, Erdinc M, Kaya MS, et al. Involvement of necroptosıs and apoptosıs ın protectıve effects of cyclosporın a on ischemıa-reperfusıon injury in rat kıdney[J]. J Mol Histol, 2024, 56(1): 30. DOI: 10.1007/s10735-024-10281-7.
|
[24] |
Li Y, Hou D, Chen X, et al. Hydralazine protects against renal ischemia-reperfusion injury in rats[J]. Eur J Pharmacol, 2019, 843: 199-209. DOI: 10.1016/j.ejphar.2018.11.015.
|
[25] |
Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382): 167-169. DOI: 10.1038/358167a0.
|
[26] |
Yang JR, Yao FH, Zhang JG, et al. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway[J]. Am J Physiol Renal Physiol, 2014, 306(1): F75-F84. DOI: 10.1152/ajprenal.00117.2013.
|
[27] |
Pang Y, Zhang PC, Lu RR, et al. Andrade-Oliveira salvianolic acid B modulates caspase-1-mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway[J]. Front Pharmacol, 2020, 11: 541426. DOI: 10.3389/fphar.2020.541426.
|
[28] |
Xiao C, Zhao H, Zhu H, et al. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia-reperfusion injury via NF-κB signaling[J]. Front Physiol, 2020, 11: 906. DOI: 10.3389/fphys.2020.00906.
|
[29] |
Wu W, Liu D, Zhao Y, et al. Cholecalciferol pretreatment ameliorates ischemia/reperfusion-induced acute kidney injury through inhibiting ROS production, NF-κB pathway and pyroptosis[J]. Acta Histochem, 2022, 124(4): 151875. DOI: 10.1016/j.acthis.2022.151875.
|
[30] |
Tonnus W, Maremonti F, Belavgeni A, et al. Gasdermin D-deficient mice are hypersensitive to acute kidney injury[J]. Cell Death Dis, 2022, 13(9): 792. DOI: 10.1038/s41419-022-05230-9.
|
[31] |
Li S, Zhuang K, He Y, et al. Leptin relieves ischemia/reperfusion induced acute kidney injury through inhibiting apoptosis and autophagy[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2022, 47(1): 8-17. DOI: 10.11817/j.issn.1672-7347.2022.210244.
|
[32] |
Liu Z, Chen Y, Du Z, et al. Ischemic postconditioning protects against acute kidney injury after limb ischemia reperfusion by regulating HMGB1 release and autophagy[J]. Ren Fail, 2023, 45(1): 2189482. DOI: 10.1080/0886022X.2023.2189482.
|
[33] |
Zhou BY, Yang J, Luo RR, et al. Dexmedetomidine alleviates ischemia/reperfusion-associated acute kidney injury by enhancing autophagic activity via the α2-AR/AMPK/mTOR pathway[J]. Front Biosci (Landmark Ed), 2023, 28(12): 323. DOI: 10.31083/j.fbl2812323.
|
[34] |
Chen Y, Liu Y, Tu W, et al. m6A demethylase FTO transcriptionally activated by SP1 improves ischemia reperfusion-triggered acute kidney injury by activating Ambra1/ULK1-mediated autophagy[J]. FASEB J, 2024, 38(20): e70118. DOI: 10.1096/fj.202400132RRR.
|
[35] |
Liu M, Chen J, Sun M, et al. Protection of Ndrg2 deficiency on renal ischemia-reperfusion injury via activating PINK1/Parkin-mediated mitophagy[J]. Chin Med J (Engl), 2024, 137(21): 2603-2614. DOI: 10.1097/CM9.0000000000002957.
|
[36] |
Hosohata K, Harnsirikarn T, Chokesuwattanaskul S. Ferroptosis: a potential therapeutic target in acute kidney injury[J]. Int J Mol Sci, 2022, 23(12): 6583. DOI: 10.3390/ijms23126583.
|
[37] |
Wang Y, Quan F, Cao Q, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis[J]. J Adv Res, 2020, 28: 231-243. DOI: 10.1016/j.jare.2020.07.007.
|
[38] |
Zhao Z, Wu J, Xu H, et al. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury[J]. Cell Death Dis, 2020, 11(8): 629. DOI: 10.1038/s41419-020-02871-6.
|
[39] |
Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin?A novel hypothesis[J]. Diabetes Obes Metab, 2018, 20(6): 1361-1366. DOI: 10.1111/dom.13229.
|
[40] |
|
[41] |
Hirashima Y, Nakano T, Torisu K, et al. SGLT2 inhibition mitigates transition from acute kidney injury to chronic kidney disease by suppressing ferroptosis[J]. Sci Rep, 2024, 14(1): 20386. DOI: 10.1038/s41598-024-71416-0.
|
[42] |
Güler MC, Akpinar E, Tanyeli A, et al. Costunolide prevents renal ischemia-reperfusion injury in rats by reducing autophagy, apoptosis, inflammation, and DNA damage[J]. Iran J Basic Med Sci, 2023, 26(10): 1168-1176. DOI: 10.22038/IJBMS.2023.71779.15596.
|
[43] |
Zheng X, Chen D, Wu J, et al. Apelin-13 inhibits ischemia-reperfusion mediated podocyte apoptosis by reducing m-TOR phosphorylation to enhance autophagy[J]. FASEB J, 2025, 39(2): e70319. DOI: 10.1096/fj.202402850R.
|
[44] |
Liu L, Wei Q, Wang R, et al. Rab7-regulated ferroptosis contributes to tubular epithelial cells injury by degradation of GPX4 via chaperone-mediated autophagy in AKI[J]. Am J Physiol Cell Physiol, 2025, 328(2): C699-C709. DOI: 10.1152/ajpcell.00636.2023.
|
[45] |
Ni L, Yuan C, Wu X. Targeting ferroptosis in acute kidney injury[J]. Cell Death Dis, 2022, 13(2): 182. DOI: 10.1038/s41419-022-04628-9.
|
[46] |
Granata S, Votrico V, Spadaccino F, et al. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants[J]. Antioxidants (Basel), 2022, 11(4): 769. DOI: 10.3390/antiox11040769.
|
[47] |
Kuo IY, Brill AL, Lemos FO, et al. Polycystin 2 regulates mitochondrial Ca 2+ signaling, bioenergetics, and dynamics through mitofusin 2[J]. Sci Signal, 2019, 12(580): eaat7397. DOI: 10.1126/scisignal.aat7397.
|
[48] |
Ning B, Guo C, Kong A, et al. Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease[J]. Cells, 2021, 10(11): 3204. DOI: 10.3390/cells10113204.
|
[49] |
|
[50] |
Wu X, Wu X, Wang Z, et al. Delivery of exogenous miR-19b by Wharton’s Jelly Mesenchymal Stem Cells attenuates transplanted kidney ischemia/reperfusion injury by regulating cellular metabolism[J]. Drug Deliv Transl Res, 2025, 15(3): 925-938. DOI: 10.1007/s13346-024-01645-3.
|