切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (04) : 221 -224. doi: 10.3877/cma.j.issn.1674-3253.2019.04.002

所属专题: 文献

实验研究

基于苯丙氨酸的聚酯酰胺纳米递药系统制备及其体外抗前列腺癌的研究
张俊夫1, 熊海云2, 段剑礼1, 李璐婧2, 康洋2, 庞俊2,()   
  1. 1. 510630 广州,中山大学附属第三医院泌尿外科
    2. 518107 深圳,中山大学附属第七医院泌尿外科
  • 收稿日期:2019-04-15 出版日期:2019-08-01
  • 通信作者: 庞俊
  • 基金资助:
    国家自然科学基金面上项目(81772754); 广东省自然科学基金重大基础研究培育项目(2017A030308009)

Construction and in vitro antitumor effect on prostate cancer of phenylalanine-based poly(ester amide)snanoparticles drug delivery system

Junfu Zhang1, Haiyun Xiong2, Jianli Duan1, Lujing Li2, Yang Kang2, Jun Pang2,()   

  1. 1. Department of Urology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
    2. Department of Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
  • Received:2019-04-15 Published:2019-08-01
  • Corresponding author: Jun Pang
  • About author:
    Corresponding author: Pang Jun, Email:
引用本文:

张俊夫, 熊海云, 段剑礼, 李璐婧, 康洋, 庞俊. 基于苯丙氨酸的聚酯酰胺纳米递药系统制备及其体外抗前列腺癌的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(04): 221-224.

Junfu Zhang, Haiyun Xiong, Jianli Duan, Lujing Li, Yang Kang, Jun Pang. Construction and in vitro antitumor effect on prostate cancer of phenylalanine-based poly(ester amide)snanoparticles drug delivery system[J]. Chinese Journal of Endourology(Electronic Edition), 2019, 13(04): 221-224.

目的

探究基于苯丙氨酸的聚酯酰胺的纳米递药系统的制备及其对体外培养前列腺癌细胞的抑制效果。

方法

采用纳米沉淀法制备聚酯酰胺纳米粒,利用透射电镜和纳米电位仪测量纳米粒的形貌和大小分布,利用破碎沉淀法与荧光磷光光谱仪测定其载药量和包封率。采用四甲基偶氮唑盐微量酶反应比色法测定载药纳米粒对前列腺癌细胞LNCaP的抑制效果,采用膜联蛋白V-APC/7AAD双染法并用流式细胞仪测定其对肿瘤细胞的凋亡诱导作用。

结果

采用纳米沉淀法成功制备了空白及包载多柔吡星(DOX)的载药聚酯酰胺纳米粒,粒径约为90~110 nm,大小分布较为均匀。空白纳米粒在不同浓度下均显示出良好的生物相容性,高浓度100 μg/ml的材料作用下,LNCaP的细胞活力仍保持在(95.32±3.97)%。与DOX组的IC50 (3.29±0.63)μg/ml相比,载药纳米粒对前列腺癌细胞活性抑制明显,IC50为(1.21±0.43)μg/ml,差异具有统计学意义(t=6.693,P<0.001)。流式细胞仪检测载药纳米粒能有效诱导前列腺癌细胞进入中晚期凋亡,对照组、DOX组与DOX@8p6组凋亡率分别为2.32%、29.16%和61.62%,后两组间差异具有统计学意义(χ2=2217,P<0.001),且DOX@8p6组凋亡情况多于DOX组(t=11.238,P<0.001),显示出载药纳米粒对前列腺癌细胞LNCaP更高的促凋亡效率。

结论

基于苯丙氨酸的聚酯酰胺纳米粒具有良好的生物相容性,其作为递送抗肿瘤药物多柔吡星的纳米药物载体时能有效地直接抑制前列腺癌肿瘤细胞活性及诱导肿瘤细胞凋亡。

Objective

To study the construction of phenylalanine-based poly(ester amide)sas drug delivery system and its inhibition of in vitro prostate cancer cell LNCaP.

Methods

The phenylalanine-based poly(ester amide)s nanoparticles were synthesized by nanoprecipitation. The morphology and size distribution of nanoparticle were inspected by transmission electron microscopy and nanoparticle size analyzer. Drug loading and encapsulation rate were measured using fragmentation precipitation method by fluorescent phosphorescence spectrometer. Inhibition of prostate cancer cell LNCaP using doxorubicin-loaded phenylalanine-based poly(ester amide)s nanoparticle were inspected by MTT method and cell apoptosis effect was analyzed by V-APC/7AAD double staining method.

Results

The phenylalanine-based poly(ester amide)s nanoparticles were synthesized successfully as doxorubicin delivery system with a uniform size of about 90-110 nm. The blank nanoparticles showed a great biocompatibility at different concentrations. The cell viability of LNCaP remained at (95.32±3.97)% at a high blank nanoparticle concentration of 100 μg/ml. Compared with the DOX group whose IC50 was (3.29±0.63) μg/ml, the activity of prostate cancer cells co-cultured with drug-loaded nanoparticles was significantly inhibited, whose IC50 was (1.21±0.43) μg/ml, which was statistically different (t= 6.693, P<0.001). The cell apoptosis effectively induced by drug-loaded nanoparticles was measured by flow cytometry detection. The control group, DOX group and DOX@8p6 group were 2.32%, 29.16% and 61.62%, respectively, while the difference between the three groups was statistically significant (F=294.44, P<0.001), and the DOX@8p6 group had more apoptosis than the DOX group (t=11.238, P<0.001), showing drug-loaded nanoparticles had higher pro-apoptotic efficiency against prostate cancer cell line LNCaP.

Conclusion

It demonstrated that the biocompatible phenylalanine-based poly(ester amide)s nanoparticles as doxorubicin delivery system could provide effective prostate cancer cell inhibition and high cell apoptosis.

表1 空白及载药8p6纳米粒表征分析
图1 MTT法测定载药纳米粒对肿瘤细胞抑制作用
[1]
Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy[J]. Mater Sci Eng C Mater Biol Appl, 2016, 60 : 569-578.
[2]
Deng M, Wu J, Reinhart-King CA, et al. Synthesis and characterization of biodegradable poly(ester amide)s with pendant amine functional groups and in vitro cellular response[J]. Biomacromolecules, 2009, 10(11): 3037-3047.
[3]
You X, Gu Z, Huang J, et al. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery[J]. Acta Biomater, 2018, 74 : 180-191.
[4]
Katsarava R, Beridze V, Arabuli N, et al. Amino acid-based bioanalogous polymers. Synthesis, and study of regular poly(ester amide)s based on bis(α-amino acid) α,ω-alkylene diesters, and aliphatic dicarboxylic acids[J]. J Polym Sci, Part A: Polym Chem, 1999, 37(4): 391-407.
[5]
Di Maio M, Basch E, Bryce J, et al. Patient-reported outcomes in the evaluation of toxicity of anticancer treatments[J]. Nat Rev Clin Oncol, 2016, 13(5): 319-25.
[6]
Scott WW, Johnson DE, Schmidt JE, et al. Chemotherapy of advanced prostatic carcinoma with cyclophosphamide or 5-fluorouracil: results of first national randomized study[J]. J Urol, 1975, 114(6): 909-911.
[7]
Yagoda A, Petrylak D. Cytotoxic chemotherapy for advanced hormone-resistant prostate cancer[J]. Cancer, 2015, 71(S3): 1098-1109.
[8]
马琪,李永红,杨斌,等. 前列腺癌化疗安全共识[J]. 现代泌尿外科杂志, 2018, 23(2): 85-92.
[9]
Zhang J, Wang L, You X, et al. Nanoparticle therapy for prostate cancer: overview and perspectives[J]. Curr Top Med Chem, 2019, 19(1): 57-73.
[10]
Azim HA, Ibrahim AS. Breast cancer in Egypt, China and Chinese: statistics and beyond[J]. J Thorac Dis, 2014, 6(7): 864-866.
[11]
Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release[J]. Chem Rev, 2016, 116(4): 2602-63.
[12]
Markman JL, Rekechenetskiy A, Holler E, et al. Nanomedicine therapeutic approaches to overcome cancer drug resistance[J]. Adv Drug Deliv Rev, 2013, 65(13-14): 1866-1879.
[1] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[2] 曹建辉, 徐栋, 冯斌, 郑俊彪, 黄伟伟. 超声造影在不同前列腺特异抗原含量前列腺癌穿刺活检中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 307-312.
[3] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[4] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[5] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[6] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[7] 穆靖军, 马增妮, 曹晓明. 临床局限性前列腺癌包膜外侵犯的危险因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 326-331.
[8] 李全喜, 唐辉军, 唐友杰, 杨飞. DISCO成像技术在前列腺增生与前列腺癌鉴别诊断中的应用价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 332-335.
[9] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[10] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[11] 南方护骨联盟前列腺癌骨转移专家组. 前列腺癌骨转移诊疗专家共识(2023版)[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 201-208.
[12] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[13] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[14] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要