[1] |
徐田野, 梁洪生, 姚凯, 等. 增强现实和混合现实技术在神经外科领域的应用[J]. 临床神经外科杂志, 2019, 16(4): 355-358.
|
[2] |
喻忠, 李旭祥, 凌辰, 等. 混合现实-3D打印个性化导板用于精准化人工全膝关节表面置换术的临床应用[J]. 中国数字医学, 2020, 15(1): 53-57.
|
[3] |
Rassweiler J, Rassweiler MC, Müller M, et al. Surgical navigation in urology: European perspective[J]. Curr Opin Urol, 2014, 24(1): 81-97.
|
[4] |
Greco F, Cadeddu JA, Gill IS, et al. Current perspectives in the use of molecular imaging to target surgical treatments for genitourinary cancers[J]. Eur Urol, 2014, 65(5): 947-964.
|
[5] |
van Oosterom MN, van der Poel HG, Navab N, et al. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions[J]. Curr Opin Urol, 2018, 28(2): 205-213.
|
[6] |
Rassweiler-Seyfried MC, Rassweiler JJ, Weiss C, et al. iPad-assisted percutaneous nephrolithotomy (PCNL): a matched pair analysis compared to standard PCNL[J]. World J Urol, 2020, 38(2): 447-453.
|
[7] |
Rassweiler JJ, Müller M, Fangerau M, et al. iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience[J]. Eur Urol, 2012, 61(3): 628-631.
|
[8] |
Klein JT, Rassweiler J, Rassweiler-Seyfried MC. Validation of a novel cost effective easy to produce and durable in vitro model for kidney-puncture and percutaneous nephrolitholapaxy-simulation[J]. J Endourol, 2018, 32(9): 871-876.
|
[9] |
郑煜, 李建新, 周兴. SonixGPS导航超声与普通超声引导下经皮肾镜治疗肾结石的疗效比较[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(1): 20-23.
|
[10] |
Marien A, de Luis Abreu AC, Desai M, et al. Three-dimensional navigation system integrating position-tracking technology with a movable tablet display for percutaneous targeting[J]. BJU Int, 2015, 115(4): 659-665.
|
[11] |
Burgmans MC, den Harder JM, Meershoek P, et al. Phantom study investigating the accuracy of manual and automatic image fusion with the ge logiq e9: implications for use in percutaneous liver interventions[J]. Cardiovasc Intervent Radiol, 2017, 40(6): 914-923.
|
[12] |
Ritter M, Rassweiler MC, Rassweiler JJ, et al. New puncture techniques in urology using 3D-assisted imaging[J]. Urologe A, 2012, 51(12): 1703-1707.
|
[13] |
Furukawa J, Miyake H, Tanaka K, et al. Console-integrated real-time three-dimensional image overlay navigation for robot-assisted partial nephrectomy with selective arterial clamping: early single-centre experience with 17 cases[J]. Int J Med Robot, 2014, 10(4): 385-390.
|
[14] |
Li G, Dong J, Huang W, et al. Establishment of a novel system for the preoperative prediction of adherent perinephric fat (APF) occurrence based on a multi-mode and multi-parameter analysis of dual-energy CT[J]. Transl Androl Urol, 2019, 8(5): 421-431.
|
[15] |
温星桥, 祝炜安, 王喻, 等. DVPV系统三维影像及虚拟现实导航在泌尿外科复杂手术的应用[J/CD]. 中华腔镜泌尿外科杂志(电子版), 2020, 14 (2): 91-95.
|
[16] |
曹志强, 柳云恩, 刘龙, 等. 3D打印技术在肾脏部分切除术中的应用[J]. 解放军医药杂志, 2015, 27(11): 6-9,20.
|
[17] |
Checcucci E, De Cillis S, Porpiglia F. 3D-printed models and virtual reality as new tools for image-guided robot-assisted nephron-sparing surgery: a systematic review of the newest evidences[J]. Curr Opin Urol, 2020, 30(1): 55-64.
|
[18] |
Ntourakis D, Memeo R, Soler L, et al. Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience[J]. World J Surg, 2016, 40(2): 419-426.
|
[19] |
Simpfendörfer T, Gasch C, Hatiboglu G, et al. Intraoperative computed tomography imaging for navigated laparoscopic renal surgery: first clinical experience[J]. J Endourol, 2016, 30(10): 1105-1111.
|
[20] |
Wegelin O, van Melick H, Hooft L, et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. is there a preferred technique?[J]. Eur Urol, 2017, 71(4): 517-531.
|
[21] |
Mathur P, Samei G, Tsang K, et al. On the feasibility of transperineal 3D ultrasound image guidance for robotic radical prostatectomy[J]. Int J Comput Assist Radiol Surg, 2019, 14(6): 923-931.
|
[22] |
Ukimura O, Aron M, Nakamoto M, et al. Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy[J]. J Endourol, 2014, 28(6): 625-630.
|
[23] |
Bluemel C, Matthies P, Herrmann K, et al. 3D scintigraphic imaging and navigation in radioguided surgery: freehand SPECT technology and its clinical applications[J]. Expert Rev Med Devices, 2016, 13(4): 339-351.
|
[24] |
van den Berg NS, Engelen T, Brouwer OR, et al. A pilot study of SPECT/CT-based mixed-reality navigation towards the sentinel node in patients with melanoma or Merkel cell carcinoma of a lower extremity[J]. Nucl Med Commun, 2016, 37(8): 812-817.
|
[25] |
van Oosterom MN, Meershoek P, KleinJan GH, et al. Navigation of Fluorescence Cameras during Soft Tissue Surgery-Is it Possible to Use a Single Navigation Setup for Various Open and Laparoscopic Urological Surgery Applications?[J]. J Urol, 2018, 199(4): 1061-1068.
|
[26] |
van Oosterom MN, Engelen MA, van den Berg NS, et al. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study[J]. J Biomed Opt, 2016, 21(8): 86008.
|