切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 446 -449. doi: 10.3877/cma.j.issn.1674-3253.2021.05.025

综述

长链非编码RNA在前列腺癌中的作用及机制研究进展
刘泽林1, 郭佳1,()   
  1. 1. 430060 湖北,武汉大学人民医院泌尿外科
  • 收稿日期:2020-08-24 出版日期:2021-10-01
  • 通信作者: 郭佳
  • 基金资助:
    国家自然科学基金青年基金(81702539)

The role and mechanism of long non-coding RNAs in prostate cancer: an update

Zelin Liu1, Jia Guo1()   

  • Received:2020-08-24 Published:2021-10-01
  • Corresponding author: Jia Guo
引用本文:

刘泽林, 郭佳. 长链非编码RNA在前列腺癌中的作用及机制研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(05): 446-449.

Zelin Liu, Jia Guo. The role and mechanism of long non-coding RNAs in prostate cancer: an update[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2021, 15(05): 446-449.

表1 不同长链非编码RNA调控前列腺癌的作用机制
作用方式 名称 作用机制 参考文献
促癌 ARLNC1 ARLNC1基因敲除抑制AR的表达、全局AR信号和PCa的生长 [13]
  FOXP4-AS1 通过结合miR-3184-5p上调FOXP4促进PCa生长 [18]
  HOXD-AS1 招募WDR5通过介导H3K4me3直接调控靶基因的表达,促进PCa的增殖、去势抵抗和化疗耐药 [27]
  HULLK 增加对激素的敏感性来推动CRPC进展 [28]
  LEF1-AS1 下调LEF1的表达抑制了EMT、细胞侵袭和PCa的迁移 [29]
  LncRNA-p21 将EZH2的功能由组蛋白甲基转移酶转换为非组蛋白甲基转移酶,从而使STAT3甲基化以促进PCa神经内分泌化(NED) [30]
  MALAT1 减弱miR-145-5p的表达,上调AKAP12,诱导PCa细胞对DTX的化疗耐药,促进了PCa细胞的增殖、迁移和侵袭 [20]
  MIR222HG 促进雄激素非依赖性细胞的生长,并抑制AR调节的双氢睾酮(DHT)诱导的激素敏感型前列腺癌(HSPC)LNCaP细胞中KLK3、TMPRSS2和FKBP5的表达,促进CRPC的发生 [31]
  NEAT1 沉默NEAT1抑制了CDC5L的转录活性,使ARGN诱导DNA损伤、扰乱细胞周期、抑制PCa细胞的增殖 [16]
  PCA3 1.通过控制AR依赖的信号转导和AR辅助因子及EMT相关基因的表达来调节细胞存活;2.通过吸附miR-218-5p,从而上调HMGB1的表达,促进PCa的进展 [11,19]
  PCAT1 1.与FKBP51结合,取代PHLPP/FKBP51/IKKα蛋白复合体,导致AKT和NF-κB信号的激活,促进CRPC进展;2.抑制BRCA2肿瘤抑制因子的表达,导致下游同源重组功能受损;3.通过上调cMyc蛋白水平促进PCa细胞增殖 [2,23]
  PCAT19 风险SNP介导的启动子增强子转换激活PCAT19-Long,PCAT19-Long与HNRNPAB相互作用,激活与PCa进展相关的细胞周期基因子集 [32]
  PRCAT38 PRCAT38和TMPRSS2的启动子与AR激活的增强子E1和E2形成染色质环,增强子E1或E2的敲除同时影响PRCAT38和TMPRSS2的转录,抑制细胞生长和迁移 [1]
  SLC45A3-ELK4 SLC45A3-ELK4融合RNA通过其转录本调控癌细胞的增殖 [33]
  ZEB1-AS1 与MLL1结合并将其募集到ZEB1的启动子区域,诱导其中的H3K4me3修饰,激活ZEB1转录。从而抑制肿瘤抑制因子miR200c,促进BMI1的表达,促进PCa细胞的增殖和迁移 [34]
抑癌 LBCS 通过与hnRNPK和AR mRNA形成复合物来抑制AR翻译效率,抑制PCa的去势抵抗 [22]
  MEG3 抑制miR-9-5p的表达,上调QKI-5蛋白的表达,降低PCa细胞的增殖、迁移和侵袭能力,增加细胞凋亡率 [35]
[1]
Chen Z, Song X, Li Q, et al. Androgen Receptor-Activated Enhancers Simultaneously Regulate Oncogene TMPRSS2 and lncRNA PRCAT38 in Prostate Cancer[J]. Cells, 2019, 8(8): 864.
[2]
Xiao H, Zhang F, Zou Y, et al. The Function and Mechanism of Long Non-coding RNA-ATB in Cancers[J]. Front Physiol, 2018, 9: 321.
[3]
Flippot R, Beinse G, Boilève A, et al. Long non-coding RNAs in genitourinary malignancies: a whole new world[J]. Nat Rev Urol, 2019, 16(8): 484-504.
[4]
Chandra GS, Nandan TY. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets[J]. Int J Cancer, 2017, 140(9): 1955-1967.
[5]
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17(1): 47-62.
[6]
Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes[J]. Cell, 2011, 147(4): 789-802.
[7]
Dykes IM, Emanueli C. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA[J]. Genomics Proteomics Bioinformatics, 2017, 15(3): 177-186.
[8]
Bayat H, Narouie B, Ziaee S-AM, et al. Two long non-coding RNAs, Prcat17.3 and Prcat38, could efficiently discriminate benign prostate hyperplasia from prostate cancer[J]. Prostate, 2018, 78(11): 812-818.
[9]
Chistiakov DA, Myasoedova VA, Grechko AV, et al. New biomarkers for diagnosis and prognosis of localized prostate cancer[J]. Semin Cancer Biol, 2018, 52(Pt 1): 9-16.
[10]
张其强, 赵云丽, 张学宝, 等. PCA3基因在前列腺癌的诊断和治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(3): 207-210.
[11]
Lemos AEG, Ferreira LB, Batoreu NM, et al. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells[J]. Tumour Biol, 2016, 37(8): 11339-11348.
[12]
Deng J, Tang J, Wang G, et al. Long Non-Coding RNA as Potential Biomarker for Prostate Cancer: Is It Making a Difference?[J]. Int J Environ Res Public Health, 2017, 14(3): 270.
[13]
Zhang Y, Pitchiaya S, Cieślik M, et al. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression[J]. Nat Genet, 2018, 50(6): 814-824.
[14]
Lin D. Commentary on "The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer." Chakravarty D, Sboner A, Nair SS, Giannopoulou E, Li R, Hennig S, Mosquera JM, Pauwels J, Park K, Kossai M, MacDonald TY, Fontugne J, Erho N, Vergara IA, Ghadessi M, Davicioni E, Jenkins RB, Palanisamy N, Chen Z, Nakagawa S, Hirose T, Bander NH, Beltran H, Fox AH, Elemento O, Rubin MA, University of Washington-Urology, Seattle, WA. Nat Commun 2014; 5:5383[J]. Urol Oncol, 2016, 34(11): 522.
[15]
West JA, Davis CP, Sunwoo H, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites[J]. Mol Cell, 2014, 55(5): 791-802.
[16]
Li X, Wang X, Song W, et al. Oncogenic Properties of NEAT1 in Prostate Cancer Cells Depend on the CDC5L-AGRN Transcriptional Regulation Circuit[J]. Cancer Res, 2018, 78(15): 4138-4149.
[17]
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505(7483): 344-352.
[18]
Wu X, Xiao Y, Zhou Y, et al. LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4[J]. Cell Death Dis, 2019, 10(7): 472.
[19]
Zhang G, He X, Ren C, et al. Long noncoding RNA PCA3 regulates prostate cancer through sponging miR-218-5p and modulating high mobility group box 1[J]. J Cell Physiol, 2019, 234(8): 13097-13109.
[20]
Xue D, Lu H, Xu HY, et al. Long noncoding RNA MALAT1 enhances the docetaxel resistance of prostate cancer cells via miR-145-5p-mediated regulation of AKAP12[J]. J Cell Mol Med, 2018, 22(6): 3223-3237.
[21]
Guennewig B, Cooper AA. The central role of noncoding RNA in the brain[J]. Int Rev Neurobiol, 2014, 116: 153-194.
[22]
Gu P, Chen X, Xie R, et al. A novel AR translational regulator lncRNA LBCS inhibits castration resistance of prostate cancer[J]. Mol Cancer, 2019, 18(1): 109.
[23]
Xiong T, Li J, Chen F, et al. PCAT-1: a novel oncogenic long non-coding RNA in human cancers[J]. Int J Biol Sci, 2019, 15(4): 847-856.
[24]
Prensner JR, Chen W, Iyer MK, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer[J]. Cancer Res, 2014, 74(6): 1651-1660.
[25]
Prensner JR, Chen W, Han S, et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc[J]. Neoplasia, 2014, 16(11): 900-908.
[26]
Shang Z, Yu J, Sun L, et al. LncRNA PCAT1 activates AKT and NF-κB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKα complex[J]. Nucleic Acids Res, 2019, 47(8): 4211-4225.
[27]
Gu P, Chen X, Xie R, et al. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5[J]. Mol Ther, 2017, 25(8): 1959-1973.
[28]
Ta HQ, Whitworth H, Yin Y, et al. Discovery of a novel long noncoding RNA overlapping the LCK gene that regulates prostate cancer cell growth[J]. Mol Cancer, 2019, 18(1): 113.
[29]
Liu D-C, Song L-L, Liang Q, et al. Long noncoding RNA LEF1-AS1 silencing suppresses the initiation and development of prostate cancer by acting as a molecular sponge of miR-330-5p via LEF1 repression[J]. J Cell Physiol, 2019, 234(8): 12727-12744.
[30]
Luo J, Wang K, Yeh S, et al. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling[J]. Nat Commun, 2019, 10(1): 2571.
[31]
Sun T, Du S-Y, Armenia J, et al. Expression of lncRNA MIR222HG co-transcribed from the miR-221/222 gene promoter facilitates the development of castration-resistant prostate cancer[J]. Oncogenesis, 2018, 7(3): 30.
[32]
Hua JT, Ahmed M, Guo H, et al. Risk SNP-Mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19[J]. Cell, 2018, 174(3): 564-575.
[33]
Qin F, Zhang Y, Liu J, et al. SLC45A3-ELK4 functions as a long non-coding chimeric RNA[J]. Cancer letters, 2017, 404: 53-61.
[34]
Su W, Xu M, Chen X, et al. Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer[J]. Mol Cancer, 2017, 16(1): 142.
[35]
Wu M, Huang Y, Chen T, et al. LncRNA MEG3 inhibits the progression of prostate cancer by modulating miR-9-5p/QKI-5 axis[J]. J Cell Mol Med, 2019, 23(1): 29-38.
[1] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[2] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[3] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[4] 王功炜, 李书豪, 魏松, 吕博然, 胡成. 溶瘤病毒M1对不同前列腺癌细胞杀伤效果的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 626-632.
[5] 施一辉, 张平新, 朱勇, 杨德林. 机器人辅助前列腺根治术后切缘阳性的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 633-637.
[6] 谢汶歆, 马乐, 刘晔, 曹晓明, 张万春. 前列腺特异性膜抗原PET/CT在肾癌诊疗中的应用价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 514-519.
[7] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[8] 杨勇军, 曾一鸣, 贺显雅, 卢强, 李远伟. ASA分级≥Ⅲ级患者局麻经会阴前列腺多模态影像融合穿刺的安全性和有效性[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 441-447.
[9] 李鑫钊, 张廷涛, 朱峰, 刘金山, 刘大闯. 血纤维蛋白原、D-二聚体及碱性磷酸酶诊断前列腺癌骨转移的价值分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 459-463.
[10] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[11] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[12] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[13] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[14] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[15] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?