切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 539 -545. doi: 10.3877/cma.j.issn.1674-3253.2022.06.011

临床研究

深度学习图像重建双低技术在CT尿路造影中的初步应用
张悦1, 张可1, 郭月飞1, 郭焯欣1, 孟占鳌1,()   
  1. 1. 510630 广州,中山大学附属第三医院放射科
  • 收稿日期:2022-05-19 出版日期:2022-12-01
  • 通信作者: 孟占鳌
  • 基金资助:
    广州市科技计划项目(202007030007)

Preliminary application of deep learning image reconstruction double-low technique in CT urography

Yue Zhang1, Ke Zhang1, Yuefei Guo1, Zhuoxin Guo1, Zhan'ao Meng1,()   

  1. 1. Department of Radiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
  • Received:2022-05-19 Published:2022-12-01
  • Corresponding author: Zhan'ao Meng
引用本文:

张悦, 张可, 郭月飞, 郭焯欣, 孟占鳌. 深度学习图像重建双低技术在CT尿路造影中的初步应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(06): 539-545.

Yue Zhang, Ke Zhang, Yuefei Guo, Zhuoxin Guo, Zhan'ao Meng. Preliminary application of deep learning image reconstruction double-low technique in CT urography[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2022, 16(06): 539-545.

目的

探讨100 kV深度学习图像重建(DLIR)在CT尿路造影(CTU)中双低(低辐射剂量、低对比剂剂量)技术的可行性,并与传统的120 kV自适应统计迭代重建-V(ASIR-V)标准方案进行比较。

方法

收集60例行腹部CTU增强扫描的患者按扫描方案分为标准方案组(S组)和双低方案组(L组),记录L组和S组对比剂剂量、容积CT剂量指数和剂量长度乘积,计算有效剂量。对S组采用60%ASIR-V(S-AV60)重建,L组采用60%ASIR-V(L-AV60)、DLIR-M、DLIR-H重建。测量右侧肾盂、右侧肾脏实质、左侧肾盂、左侧肾脏实质、右侧输尿管、左侧输尿管、膀胱、腰大肌CT值和标准差(SD),计算信噪比(SNR)和对比噪声比(CNR)。由两名临床经验丰富的诊断医师对原始轴位影像、重建后容积再现(VR)图像和最大强度投影(MIP)图像进行双盲法主观评分。两组有效剂量(ED)比较采用t检验,CT、SD、SNR、CNR值等客观评价参数的分析采用单因素方差分析,主观评分采用Kruskal-Wallis检验,用Kappa检验分析2名放射科医师主观评分的一致性。

结果

L组的有效剂量和对比剂剂量分别比S组减少了29.1%(P<0.001)和32.1%(P<0.001),DLIR-H组的SD最低,SNR,CNR最大。四个因素的独立分数和图像最终评分,DLIR-H组图像评分最高(P<0.001)。两名放射科医师对4个CTU的主观图像质量评分亦有很好的一致性(Kappa=0.770,P<0.001)。

结论

在CT尿路造影(CTU)中,DLIR重建的双低技术可显著降低放射剂量(29.1%)、对比剂剂量(32.1%)。与60%ASIR-V标准方案相比,DLIR-H可以进一步改善图像质量,是较好的重建算法。

Objective

To explore the feasibility of 100 kV deep learning image reconstruction (DLIR) in CT urography (CTU) and compare them with the traditional 120kV adaptive statistical iterative reconstruction-V (ASIR-V) standard scheme.

Methods

According to the scanning scheme, 60 patients with abdominal CTU enhancement scan were divided into standard plan group (group S) and double low plan group (group L). The contrast dose, volume CT dose index and dose length product of group L and group S were recorded, and the effective dose was calculated. Group S was reconstructed with 60%ASIR-V (S-AV60), and group L was reconstructed with 60%ASIR-V (L-AV60), DLIR-M and DLIR-H. The CT values and standard deviation (SD) of right renal pelvis, right renal parenchyma, left renal pelvis, left renal parenchyma, right ureter, left ureter, bladder and psoas major muscle were measured, and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The original axial images, reconstructed volume rendering (VR) images and maximum intensity projection (MIP) images were subjectively scored by two experienced clinicians. t-test was used to compare ED between the two groups. One-way ANOVA was used to analyze the objective evaluation parameters such as CT, SD, SNR and CNR. Kruskal-Wallis test was used to analyze the subjective score of the two radiologists. Kappa test was used to analyze the consistency of subjective scores of the two radiologists.

Results

Compared with group S, the effective dose and contrast dose of group L decreased by 29.1% (P<0.001) and 32.1% (P<0.001), respectively. The SD of DLIR-H group was the lowest and the SNR,CNR was the largest. The independent score and the final image score of the four factors were the highest in the DLIR-H group (P<0.001). The subjective image quality scores of 4 CTU were also consistent among 2 radiologists (Kappa=0.770, P<0.001).

Conclusions

In CT urography (CTU), the double-low technique of DLIR reconstruction can significantly reduce the radiation dose (29.1%) and contrast dose (32.1%). Compared with the 60%ASIR-V standard scheme, DLIR-H can further improve the image quality and is a better reconstruction algorithm.

表1 两组接受CTU增强检查患者一般数据和辐射剂量比较(±s
图3 不同组别CTU重建图像客观参数比较注:图3a、3b、3c、3d分别为S组与L组右侧肾盂,左侧肾盂,右侧输尿管,左侧输尿管,膀胱中CT、SD、SNR、CNR值直方图。图3a中CT值S组<L组(P<0.001),图3bSDL-DH<其他各组(P<0.001),图3c3dSNR值、CNRL-DH>其他各组(P<0.001),其中实线为L-DH与其他各组组间差异有统计学意义(P<0.001)
表2 不同组别CTU重建图像客观参数比较(±s
组别 例数 CT值(Hu) SD值
右肾盂 左肾盂 右输尿管 左输尿管 膀胱 右肾盂 左肾盂
S-AV60 30 983.06±328.53 1022.06±351.61 926.44±316.86 944.63±388.42 732.71±366.29 71.41±11.61 71.12±22.03
L-AV60 30 1285.53±527.87 1277.06±402.30 1291.45±490.11 1254.27±484.89 999.09±458.84 92.47±55.85 109.63±67.75
L-DM 30 1291.91±529.94 1289.36±401.57 1248.36±410.01 1251.14±482.09 1000.38±459.04 85.80±55.50 74.65±62.27
L-DH 30 1292.15±529.98 1289.41±401.67 1273.65±469.81 1251.44±481.84 1000.43±458.98 44.93±22.57 35.87±24.09
F 4.579 3.425 4.939 3.339 2.797 13.883 18.064
P 0.006 0.020 0.003 0.022 0.043 <0.001 <0.001
组别 SD值 SNR值
右输尿管 左输尿管 膀胱 右肾盂 左肾盂 右输尿管 左输尿管 膀胱
S-AV60 93.4±25.86 90.92±25.41 46.68±30.31 13.88±3.99 15.79±7.56 10.40±3.84 10.71±4.07 17.22±5.55
L-AV60 164.55±109.47 160.96±107.43 65.93±31.74 16.38±6.95 13.81±6.19 11.89±9.59 11.55±9.18 16.51±7.46
L-DM 104.35±70.92 99.60±72.18 50.64±39.06 19.51±11.81 29.48±21.89 19.89±15.59 21.21±17.34 23.07±12.63
L-DH 58.37±45.66 50.90±36.05 28.56±13.00 33.23±16.66 50.73±32.19 37.22±29.52 37.95±27.33 37.95±20.04
F 9.789 14.349 15.369 13.962 16.323 11.052 12.514 11.722
P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
组别 CNR值
右肾盂 左肾盂 右输尿管 左输尿管 膀胱
S-AV60 89.85±39.59 95.49±49.70 85.39±37.27 87.29±40.15 61.14±33.82
L-AV60 98.23±39.32 105.06±40.87 95.79±33.73 95.95±35.25 59.23±27.38
L-DM 110.24±42.90 119.43±45.29 107.21±37.18 109.19±40.59 68.18±32.82
L-DH 149.36±62.83 160.10±62.62 144.21±51.17 145.43±54.25 91.34±42.29
F 6.755 9.620 12.085 10.571 5.492
P <0.001 <0.001 <0.001 <0.001 0.001
图1 不同组别CTU的最大强度投影(MIP)重建图注:4组图为MIP重建,从左到右依次为S组60%ASIR-V、L组60%ASIR-V、DLIR-M、DLIR-H。S组60%ASIR-V、L组60%ASIR-V噪声点密集,DLIR-H,DLIR-M噪声最佳。S组60%ASIR-V图像在输尿管、膀胱边缘模糊,而DLIR-M、DLIR-H边缘清晰锐利,无颗粒感;MIP为最大强度投影,VR为容积再现,DLIR-M为中等级别深度学习图像重建,DLIR-H为高等级别深度学习图像重建,ASIR-V为自适应统计迭代重建-V
表3 不同组别CTU重建图像主观评分比较
图2 CTU重建图像不同组别的硬化伪影注:3组图分别为L组同一患者同层轴位图像,其中L-DH的硬化伪影面积明显小于L-AV60、L-DM。两名医师对该图像在硬化伪影的主观评分分别为(3,3,4) (3,4,5)
[1]
Li X, Shu H, Zhang Y, et al. Low-dose CT with adaptive statistical iterative reconstruction for evaluation of urinary stone[J]. Oncotarget, 2018, 9(28): 20103-20111.
[2]
Ren Z, Zhang X, Hu Z, et al. Reducing radiation dose and improving image quality in ct portal venography using 80 kv and adaptive statistical iterative reconstruction-v in slender patients[J]. Acad Radiol, 2020, 27(2): 233-243.
[3]
Lee HN, Lee SM, Choe J, et al. Diagnostic performance of CT-guided percutaneous transthoracic core needle biopsy using low tube voltage (100 kVp): comparison with conventional tube voltage (120 kVp). Acta Radiol[J]. 2018, 59(4): 425-433.
[4]
Goodenberger MH, Wagner-Bartak NA, Gupta S, et al. Computed tomography image quality evaluation of a new iterative reconstruction algorithm in the abdomen (adaptive statistical iterative reconstruction-v) a comparison with model-based iterative reconstruction, adaptive statistical iterative reconstruction, and filtered back projection reconstructions[J]. J Comput Assist Tomogr, 2018, 42(2): 184-190.
[5]
Park C, Choo KS, Kim JH, et al. Image quality and radiation dose in ct venography using model-based iterative reconstruction at 80 kvp versus adaptive statistical iterative reconstruction-Vat 70 kVp[J]. Korean J Radiol, 2019, 20(7): 1167-1175.
[6]
Goodenberger MH, Wagner-Bartak NA, Gupta S, et al. Computed tomography image quality evaluation of a new iterative reconstruction algorithm in the abdomen (adaptive statistical iterative reconstruction-v) a comparison with model-based iterative reconstruction, adaptive statistical iterative reconstruction, and filtered back projection reconstructions[J]. J Comput Assist Tomogr, 2018, 42(2): 184-190.
[7]
Laurent G, Villani N, Hossu G, et al. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance[J]. Eur Radiol, 2019, 29(8): 4016-4025.
[8]
Jensen CT, Liu X, Tamm EP, et al. Image quality assessment of abdominal ct by use of new deep learning image reconstruction: initial experience[J]. AJR Am J Roentgenol, 2020, 215(1): 50-57.
[9]
Hwang I, Cho JY, Kim SY, et al. Low tube voltage computed tomography urography using low-concentration contrast media: Comparison of image quality in conventional computed tomography urography[J]. Eur J Radiol, 2015, 84(12): 2454-2463.
[10]
Kim SY, Cho JY, Lee J, et al. Low-Tube-Voltage CT urography using low-concentration-iodine contrast media and iterative reconstruction: a multi-institutional randomized controlled trial for comparison with conventional CT urography[J]. Korean J Radiol, 2018, 19(6): 1119-1129.
[11]
Kwon H, Cho J, Oh J, et al. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique[J]. Br J Radiol, 2015, 88(1054): 20150463.
[12]
Arndt C, Güttler F, Heinrich A, et al. Deep learning ct image reconstruction in clinical practice[J]. Rofo, 2021, 193(3): 252-261.
[13]
Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence[J]. Eur Radiol, 2019, 29(5): 2185-2195.
[14]
Kim JH, Yoon HJ, Lee E, et al. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise[J]. Korean J Radiol, 2021, 22(1): 131-138.
[15]
王甜, 曹治婷, 韩秋丽. 低管电压联合低剂量对比剂在肺动脉CT成像中的应用[J]. 实用医学杂志, 2016, 32(15): 2532-2534.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[5] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[6] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[9] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[10] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[11] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[12] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[13] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 杨松林, 黄仕豪, 王丽珠, 李禧萌, 邹飞翔, 李坤炜, 梁明柱, 陈炳辉. 良性肺结节生长变化的影像学评价[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 344-350.
阅读次数
全文


摘要