切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 289 -293. doi: 10.3877/cma.j.issn.1674-3253.2024.03.016

综述

长链非编码RNA与肾癌的关系及其在肾癌中的临床应用
邓永豪1, 曹嘉正1,()   
  1. 1. 524000 湛江,广东医科大学;529030 广东,江门市中心医院泌尿外科
  • 收稿日期:2023-07-06 出版日期:2024-06-01
  • 通信作者: 曹嘉正
  • 基金资助:
    江门市基础与应用基础研究重点项目(2021030103460007434)

The relationship between long non-coding RNA and renal cell carcinoma and its clinical applications in renal cell carcinoma

Yonghao Deng1, Jiazheng Cao1,()   

  1. 1. Guangdong Medical University, Zhanjiang 524000, China; Department of Urology, Jiangmen Central Hospital, Guangdong 529030, China
  • Received:2023-07-06 Published:2024-06-01
  • Corresponding author: Jiazheng Cao
引用本文:

邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.

Yonghao Deng, Jiazheng Cao. The relationship between long non-coding RNA and renal cell carcinoma and its clinical applications in renal cell carcinoma[J]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(03): 289-293.

长链非编码RNA(lncRNAs)在肾癌的发生发展中扮演重要角色,它可以调控肾癌细胞增殖和体内成瘤、侵袭和体内转移及凋亡和治疗耐药。因此,lncRNAs可能作为肾癌的诊断标志物和靶向治疗的新靶点,在预测肾癌预测治疗反应上也具有一定潜力。

Long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of renal cell carcinoma, regulating cell proliferation, tumorigenesis in vivo, invasion, metastasis in vivo, apoptosis, and therapeutic resistance. Therefore, lncRNAs may serve as diagnostic biomarkers for renal cell carcinoma and new targets for targeted therapy, and also have certain potential in predicting treatment response in renal cell carcinoma.

[1]
Bahadoram S, Davoodi M, Hassanzadeh S, et al. Renal cell carcinoma: an overview of the epidemiology, diagnosis, and treatment[J]. G Ital Nefrol, 2022, 39(3): 2022-vol3.
[2]
Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European association of urology guidelines on renal cell carcinoma: the 2019 update[J]. Eur Urol, 2019, 75(5): 799-810.
[3]
Makino T, Kadomoto S, Izumi K, et al. Epidemiology and prevention of renal cell carcinoma[J]. Cancers, 2022, 14(16): 4059.
[4]
Govindarajan A, Castro DV, Zengin ZB, et al. Front-line therapy for metastatic renal cell carcinoma: a perspective on the current algorithm and future directions[J]. Cancers, 2022, 14(9): 2049.
[5]
Iaxx R, Lefort F, Domblides C, et al. An evaluation of cabozantinib for the treatment of renal cell carcinoma: focus on patient selection and perspectives[J]. Ther Clin Risk Manag, 2022, 18: 619-632.
[6]
周东杰, 蒋敏, 范海瑞, 等. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(4): 387-393.
[7]
Chi Y, Wang D, Wang J, et al. Long non-coding RNA in the pathogenesis of cancers[J]. Cells, 2019, 8(9): 1015.
[8]
Li M, Jiao L, Shao Y, et al. LncRNA-ZFAS1 promotes myocardial ischemia-reperfusion injury through DNA methylation-mediated Notch1 down-regulation in mice[J]. JACC Basic Transl Sci, 2022, 7(9): 880-895.
[9]
Wang J, Liu Z, Xu Y, et al. Enterobacterial LPS-inducible LINC00152 is regulated by histone lactylation and promotes cancer cells invasion and migration[J]. Front Cell Infect Microbiol, 2022, 12: 913815.
[10]
Zhou C, Wang D, Li J, et al. TGFB2-AS1 inhibits triple-negative breast cancer progression via interaction with SMARCA4 and regulating its targets TGFB2 and SOX2[J]. Proc Natl Acad Sci USA, 2022, 119(39): e2117988119.
[11]
Zhou J, Xu N, Liu B, et al. lncRNA XLOC013218 promotes cell proliferation and TMZ resistance by targeting the PIK3R2-mediated PI3K/AKT pathway in glioma[J]. Cancer Sci, 2022, 113(8): 2681-2692.
[12]
Zhang F, Wang H, Yu J, et al. LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6-regulated alternative splicing of PICALM[J]. Mol Cancer, 2021, 20(1): 6.
[13]
Zhang Y, Luo M, Cui X, et al. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA[J]. Cell Death Differ, 2022, 29(9): 1850-1863.
[14]
Wu R, Hu W, Chen H, et al. A novel human long noncoding RNA SCDAL promotes angiogenesis through SNF5-mediated GDF6 expression[J]. Adv Sci, 2021, 8(18): e2004629.
[15]
Li Z, Ma Z, Xu X. Long non-coding RNA MALAT1 correlates with cell viability and mobility by targeting miR-22-3p in renal cell carcinoma via the PI3K/Akt pathway[J]. Oncol Rep, 2019, 41(2): 1113-1121.
[16]
Zhang H, Li W, Gu W, et al. MALAT1 accelerates the development and progression of renal cell carcinoma by decreasing the expression of miR-203 and promoting the expression of BIRC5[J]. Cell Prolif, 2019, 52(5): e12640.
[17]
Pu Y, Dong Z, Xia Y, et al. LncRNA NONHSAT113026 represses renal cell carcinoma tumorigenesis through interacting with NF-κB/p50 and SLUG[J]. Biomed Pharmacother, 2019, 118: 109382.
[18]
Feng JF, Wang J, Xie G, et al. KMT2B promotes the growth of renal cell carcinoma via upregulation of SNHG12 expression and promotion of CEP55 transcription[J]. Cancer Cell Int, 2022, 22(1): 197.
[19]
Zhang C, Ren X, Zhang W, et al. Prognostic and clinical significance of long non-coding RNA SNHG12 expression in various cancers[J]. Bioengineered, 2020, 11(1): 1112-1123.
[20]
Ren Y, Huang W, Weng G, et al. LncRNA PVT1 promotes proliferation, invasion and epithelial-mesenchymal transition of renal cell carcinoma cells through downregulation of miR-16-5p[J]. Onco Targets Ther, 2019, 12: 2563-2575.
[21]
Ramadoss S, Chen X, Wang CY. Histone demethylase KDM6B promotes epithelial-mesenchymal transition[J]. J Biol Chem, 2012, 287(53): 44508-44517.
[22]
Xia M, Yao L, Zhang Q, et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3[J]. Oncotarget, 2017, 8(12): 19795-19802.
[23]
Gong A, Zhao X, Pan Y, et al. The lncRNA MEG3 mediates renal cell cancer progression by regulating ST3Gal1 transcription and EGFR sialylation[J]. J Cell Sci, 2020, 133(16): jcs244020.
[24]
Troiani M, Colucci M, D’Ambrosio M, et al. Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer[J]. Nat Commun, 2022, 13(1): 2177.
[25]
Wu Q, Yang F, Yang Z, et al. Long noncoding RNA PVT1 inhibits renal cancer cell apoptosis by up-regulating Mcl-1[J]. Oncotarget, 2017, 8(60): 101865-101875.
[26]
Jiang Y, Li W, Yan Y, et al. LINC01094 triggers radio-resistance in clear cell renal cell carcinoma via miR-577/CHEK2/FOXM1 axis[J]. Cancer Cell Int, 2020, 20: 274.
[27]
Song E L, Xing L, Wang L, et al. LncRNA ADAMTS9-AS2 inhibits cell proliferation and decreases chemoresistance in clear cell renal cell carcinoma via the miR-27a-3p/FOXO1 axis[J]. Aging, 2019, 11(15): 5705-5725.
[28]
Barth DA, Drula R, Ott L, et al. Circulating non-coding RNAs in renal cell carcinoma-pathogenesis and potential implications as clinical biomarkers[J]. Front Cell Dev Biol, 2020, 8: 828.
[29]
Wu Y, Wang YQ, Weng WW, et al. A serum-circulating long noncoding RNA signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls[J]. Oncogenesis, 2016, 5(2): e192.
[30]
He ZH, Qin XH, Zhang XL, et al. Long noncoding RNA GIHCG is a potential diagnostic and prognostic biomarker and therapeutic target for renal cell carcinoma[J]. Eur Rev Med Pharmacol Sci, 2018, 22(1):46-54.
[31]
Xie J, Zhong Y, Chen R, et al. Serum long non-coding RNA LINC00887 as a potential biomarker for diagnosis of renal cell carcinoma[J]. FEBS Open Bio, 2020, 10(9): 1802-1809.
[32]
Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA[J]. Cancer Cell, 2016, 29(5): 653-668.
[33]
Pan Y, Lu X, Shu G, et al. Extracellular vesicle-mediated transfer of LncRNA IGFL2-AS1 confers sunitinib resistance in renal cell carcinoma[J]. Cancer Res, 2023, 83(1): 103-116.
[34]
Tang H, Chen H, Yuan H, et al. Comprehensive analysis of necroptosis-related long noncoding RNA to predict prognosis, immune status, and immunotherapeutic response in clear cell renal cell carcinoma[J]. Transl Cancer Res, 2022, 11(12): 4254-4271.
[35]
Zhou L, Fang H, Guo F, et al. Computational construction of TME-related lncRNAs signature for predicting prognosis and immunotherapy response in clear cell renal cell carcinoma[J]. J Clin Lab Anal, 2022, 36(8): e24582.
[36]
Pang Y, Wang Y, Zhou X, et al. Cuproptosis-related LncRNA-based prediction of the prognosis and immunotherapy response in papillary renal cell carcinoma[J]. Int J Mol Sci, 2023, 24(2): 1464.
[1] 陈文艳, 汪云, 魏松之. 晚期三阴性乳腺癌的精准治疗[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 78-84.
[2] 尚峰进, 陈陆尧, 刘亚星, 张浩然, 连长红. 肿瘤相关中性粒细胞在胃癌发生发展和治疗中的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(01): 58-61.
[3] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[4] 张超, 过菲, 王富博, 叶宸, 杨悦, 杨波. 腹腔镜肾部分切除术:肾癌合并肾静脉癌栓的新选择[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 219-224.
[5] 张子旭, 郑俊炯, 罗云, 林天歆. 腹腔镜肾部分切除术离体猪肾培训模型的构建[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 277-283.
[6] 黄艺承, 梁海祺, 何其焕, 韦发烨, 杨舒博, 谭舒婷, 翟高强, 程继文. 机器学习模型评估RAS亚家族基因对膀胱癌免疫治疗的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 131-140.
[7] 陈荣, 钟鑫, 谭平, 张朋. 以阵发性腰痛、血尿、高血压为表现的右肾转移性副神经节瘤一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 172-174.
[8] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[9] 邓新军, 李正明, 李文彬. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾原发恶性肿瘤并发于肺癌并脑转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 114-117.
[10] 张燕, 许丁伟, 胡满琴, 李新成, 李翱, 黄洁. 胆囊癌免疫治疗的知识图谱可视化分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 319-327.
[11] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[12] 宋燕京, 乔江春, 宋京海. 中晚期肝癌TACE联合免疫靶向转化治疗后右半肝切除术一例[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 227-230.
[13] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[14] 麻凌峰, 张小杉, 施依璐, 段莎莎, 魏颖, 夏士林, 张敏洁, 王雅皙. 纳米泡载药靶向治疗动脉粥样硬化的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 214-218.
[15] 武文晓, 张大奎, 孙志刚, 韩子翰, 陈少轩, 侯智勇, 孙白龙, 介建政. pMMR/MSS型结肠癌免疫治疗效果及预后标志物研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 41-56.
阅读次数
全文


摘要