切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 289 -293. doi: 10.3877/cma.j.issn.1674-3253.2024.03.016

综述

长链非编码RNA与肾癌的关系及其在肾癌中的临床应用
邓永豪1, 曹嘉正1,()   
  1. 1. 524000 湛江,广东医科大学;529030 广东,江门市中心医院泌尿外科
  • 收稿日期:2023-07-06 出版日期:2024-06-01
  • 通信作者: 曹嘉正
  • 基金资助:
    江门市基础与应用基础研究重点项目(2021030103460007434)

The relationship between long non-coding RNA and renal cell carcinoma and its clinical applications in renal cell carcinoma

Yonghao Deng1, Jiazheng Cao1,()   

  1. 1. Guangdong Medical University, Zhanjiang 524000, China; Department of Urology, Jiangmen Central Hospital, Guangdong 529030, China
  • Received:2023-07-06 Published:2024-06-01
  • Corresponding author: Jiazheng Cao
引用本文:

邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.

Yonghao Deng, Jiazheng Cao. The relationship between long non-coding RNA and renal cell carcinoma and its clinical applications in renal cell carcinoma[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2024, 18(03): 289-293.

长链非编码RNA(lncRNAs)在肾癌的发生发展中扮演重要角色,它可以调控肾癌细胞增殖和体内成瘤、侵袭和体内转移及凋亡和治疗耐药。因此,lncRNAs可能作为肾癌的诊断标志物和靶向治疗的新靶点,在预测肾癌预测治疗反应上也具有一定潜力。

Long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of renal cell carcinoma, regulating cell proliferation, tumorigenesis in vivo, invasion, metastasis in vivo, apoptosis, and therapeutic resistance. Therefore, lncRNAs may serve as diagnostic biomarkers for renal cell carcinoma and new targets for targeted therapy, and also have certain potential in predicting treatment response in renal cell carcinoma.

[1]
Bahadoram S, Davoodi M, Hassanzadeh S, et al. Renal cell carcinoma: an overview of the epidemiology, diagnosis, and treatment[J]. G Ital Nefrol, 2022, 39(3): 2022-vol3.
[2]
Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European association of urology guidelines on renal cell carcinoma: the 2019 update[J]. Eur Urol, 2019, 75(5): 799-810.
[3]
Makino T, Kadomoto S, Izumi K, et al. Epidemiology and prevention of renal cell carcinoma[J]. Cancers, 2022, 14(16): 4059.
[4]
Govindarajan A, Castro DV, Zengin ZB, et al. Front-line therapy for metastatic renal cell carcinoma: a perspective on the current algorithm and future directions[J]. Cancers, 2022, 14(9): 2049.
[5]
Iaxx R, Lefort F, Domblides C, et al. An evaluation of cabozantinib for the treatment of renal cell carcinoma: focus on patient selection and perspectives[J]. Ther Clin Risk Manag, 2022, 18: 619-632.
[6]
周东杰, 蒋敏, 范海瑞, 等. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(4): 387-393.
[7]
Chi Y, Wang D, Wang J, et al. Long non-coding RNA in the pathogenesis of cancers[J]. Cells, 2019, 8(9): 1015.
[8]
Li M, Jiao L, Shao Y, et al. LncRNA-ZFAS1 promotes myocardial ischemia-reperfusion injury through DNA methylation-mediated Notch1 down-regulation in mice[J]. JACC Basic Transl Sci, 2022, 7(9): 880-895.
[9]
Wang J, Liu Z, Xu Y, et al. Enterobacterial LPS-inducible LINC00152 is regulated by histone lactylation and promotes cancer cells invasion and migration[J]. Front Cell Infect Microbiol, 2022, 12: 913815.
[10]
Zhou C, Wang D, Li J, et al. TGFB2-AS1 inhibits triple-negative breast cancer progression via interaction with SMARCA4 and regulating its targets TGFB2 and SOX2[J]. Proc Natl Acad Sci USA, 2022, 119(39): e2117988119.
[11]
Zhou J, Xu N, Liu B, et al. lncRNA XLOC013218 promotes cell proliferation and TMZ resistance by targeting the PIK3R2-mediated PI3K/AKT pathway in glioma[J]. Cancer Sci, 2022, 113(8): 2681-2692.
[12]
Zhang F, Wang H, Yu J, et al. LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6-regulated alternative splicing of PICALM[J]. Mol Cancer, 2021, 20(1): 6.
[13]
Zhang Y, Luo M, Cui X, et al. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA[J]. Cell Death Differ, 2022, 29(9): 1850-1863.
[14]
Wu R, Hu W, Chen H, et al. A novel human long noncoding RNA SCDAL promotes angiogenesis through SNF5-mediated GDF6 expression[J]. Adv Sci, 2021, 8(18): e2004629.
[15]
Li Z, Ma Z, Xu X. Long non-coding RNA MALAT1 correlates with cell viability and mobility by targeting miR-22-3p in renal cell carcinoma via the PI3K/Akt pathway[J]. Oncol Rep, 2019, 41(2): 1113-1121.
[16]
Zhang H, Li W, Gu W, et al. MALAT1 accelerates the development and progression of renal cell carcinoma by decreasing the expression of miR-203 and promoting the expression of BIRC5[J]. Cell Prolif, 2019, 52(5): e12640.
[17]
Pu Y, Dong Z, Xia Y, et al. LncRNA NONHSAT113026 represses renal cell carcinoma tumorigenesis through interacting with NF-κB/p50 and SLUG[J]. Biomed Pharmacother, 2019, 118: 109382.
[18]
Feng JF, Wang J, Xie G, et al. KMT2B promotes the growth of renal cell carcinoma via upregulation of SNHG12 expression and promotion of CEP55 transcription[J]. Cancer Cell Int, 2022, 22(1): 197.
[19]
Zhang C, Ren X, Zhang W, et al. Prognostic and clinical significance of long non-coding RNA SNHG12 expression in various cancers[J]. Bioengineered, 2020, 11(1): 1112-1123.
[20]
Ren Y, Huang W, Weng G, et al. LncRNA PVT1 promotes proliferation, invasion and epithelial-mesenchymal transition of renal cell carcinoma cells through downregulation of miR-16-5p[J]. Onco Targets Ther, 2019, 12: 2563-2575.
[21]
Ramadoss S, Chen X, Wang CY. Histone demethylase KDM6B promotes epithelial-mesenchymal transition[J]. J Biol Chem, 2012, 287(53): 44508-44517.
[22]
Xia M, Yao L, Zhang Q, et al. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3[J]. Oncotarget, 2017, 8(12): 19795-19802.
[23]
Gong A, Zhao X, Pan Y, et al. The lncRNA MEG3 mediates renal cell cancer progression by regulating ST3Gal1 transcription and EGFR sialylation[J]. J Cell Sci, 2020, 133(16): jcs244020.
[24]
Troiani M, Colucci M, D’Ambrosio M, et al. Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy in cancer[J]. Nat Commun, 2022, 13(1): 2177.
[25]
Wu Q, Yang F, Yang Z, et al. Long noncoding RNA PVT1 inhibits renal cancer cell apoptosis by up-regulating Mcl-1[J]. Oncotarget, 2017, 8(60): 101865-101875.
[26]
Jiang Y, Li W, Yan Y, et al. LINC01094 triggers radio-resistance in clear cell renal cell carcinoma via miR-577/CHEK2/FOXM1 axis[J]. Cancer Cell Int, 2020, 20: 274.
[27]
Song E L, Xing L, Wang L, et al. LncRNA ADAMTS9-AS2 inhibits cell proliferation and decreases chemoresistance in clear cell renal cell carcinoma via the miR-27a-3p/FOXO1 axis[J]. Aging, 2019, 11(15): 5705-5725.
[28]
Barth DA, Drula R, Ott L, et al. Circulating non-coding RNAs in renal cell carcinoma-pathogenesis and potential implications as clinical biomarkers[J]. Front Cell Dev Biol, 2020, 8: 828.
[29]
Wu Y, Wang YQ, Weng WW, et al. A serum-circulating long noncoding RNA signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls[J]. Oncogenesis, 2016, 5(2): e192.
[30]
He ZH, Qin XH, Zhang XL, et al. Long noncoding RNA GIHCG is a potential diagnostic and prognostic biomarker and therapeutic target for renal cell carcinoma[J]. Eur Rev Med Pharmacol Sci, 2018, 22(1):46-54.
[31]
Xie J, Zhong Y, Chen R, et al. Serum long non-coding RNA LINC00887 as a potential biomarker for diagnosis of renal cell carcinoma[J]. FEBS Open Bio, 2020, 10(9): 1802-1809.
[32]
Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA[J]. Cancer Cell, 2016, 29(5): 653-668.
[33]
Pan Y, Lu X, Shu G, et al. Extracellular vesicle-mediated transfer of LncRNA IGFL2-AS1 confers sunitinib resistance in renal cell carcinoma[J]. Cancer Res, 2023, 83(1): 103-116.
[34]
Tang H, Chen H, Yuan H, et al. Comprehensive analysis of necroptosis-related long noncoding RNA to predict prognosis, immune status, and immunotherapeutic response in clear cell renal cell carcinoma[J]. Transl Cancer Res, 2022, 11(12): 4254-4271.
[35]
Zhou L, Fang H, Guo F, et al. Computational construction of TME-related lncRNAs signature for predicting prognosis and immunotherapy response in clear cell renal cell carcinoma[J]. J Clin Lab Anal, 2022, 36(8): e24582.
[36]
Pang Y, Wang Y, Zhou X, et al. Cuproptosis-related LncRNA-based prediction of the prognosis and immunotherapy response in papillary renal cell carcinoma[J]. Int J Mol Sci, 2023, 24(2): 1464.
[1] 张妍, 原韶玲, 史泽洪, 郭馨阳, 牛菁华. 小肾肿瘤超声漏诊原因分析新思路[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 500-504.
[2] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[3] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[4] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[5] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[6] 谢汶歆, 马乐, 刘晔, 曹晓明, 张万春. 前列腺特异性膜抗原PET/CT在肾癌诊疗中的应用价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 514-519.
[7] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[8] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[9] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[10] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[11] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[12] 李永政, 孟煜凡, 樊知遥, 展翰翔. 胰腺神经内分泌肿瘤新辅助治疗研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 481-486.
[13] 陆思楠, 苏同荣, 张启逸. 索凡替尼转化治疗胰腺神经内分泌肿瘤肝转移一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 526-530.
[14] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?