[1] |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA A Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
|
[2] |
|
[3] |
Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries[J]. Lancet Glob Health, 2018, 6(5): e555-e567. DOI: 10.1016/S2214-109X(18)30127-X.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
Van Poppel H, Albreht T, Basu P, et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future[J]. Nat Rev Urol, 2022, 19(9): 562-572. DOI: 10.1038/s41585-022-00638-6.
|
[8] |
Schlemmer HP, Krause BJ, Schütz V, et al. Imaging of prostate cancer[J]. Deutsches Ärzteblatt Int, 2021, 118(42):713-719. DOI: 10.3238/arztebl.m2021.0309
|
[9] |
Klotz L, Chin J, Black PC, et al. Comparison of multiparametric magnetic resonance imaging-targeted biopsy with systematic transrectal ultrasonography biopsy for biopsy-naive men at risk for prostate cancer: a phase 3 randomized clinical trial[J]. JAMA Oncol, 2021, 7(4): 534-542. DOI: 10.1001/jamaoncol.2020.7589.
|
[10] |
Stabile A, Giganti F, Rosenkrantz AB, et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions[J]. Nat Rev Urol, 2020, 17(1): 41-61. DOI: 10.1038/s41585-019-0212-4.
|
[11] |
Lone SN, Nisar S, Masoodi T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments[J]. Mol Cancer, 2022, 21(1): 79. DOI: 10.1186/s12943-022-01543-7.
|
[12] |
Crocetto F, Russo G, Di Zazzo E, et al. Liquid biopsy in prostate cancer management-current challenges and future perspectives[J]. Cancers (Basel), 2022, 14(13): 3272. DOI: 10.3390/cancers14133272.
|
[13] |
Soda N, Rehm BHA, Sonar P, et al. Advanced liquid biopsy technologies for circulating biomarker detection[J]. J Mater Chem B, 2019, 7(43): 6670-6704. DOI: 10.1039/C9TB01490J.
|
[14] |
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. N Engl J Med, 2012, 366(10): 883-892. DOI: 10.1056/NEJMoa1113205.
|
[15] |
Huang HM, Li HX. Tumor heterogeneity and the potential role of liquid biopsy in bladder cancer[J]. Cancer Commun (Lond), 2021, 41(2): 91-108. DOI: 10.1002/cac2.12129.
|
[16] |
Song P, Wu LR, Yan YH, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics[J]. Nat Biomed Eng, 2022, 6(3): 232-245. DOI: 10.1038/s41551-021-00837-3.
|
[17] |
Trujillo B, Wu A, Wetterskog D, et al. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges[J]. Br J Cancer, 2022, 127(8): 1394-1402. DOI: 10.1038/s41416-022-01881-9.
|
[18] |
Chen S, Petricca J, Ye W, et al. The cell-free DNA methylome captures distinctions between localized and metastatic prostate tumors[J]. Nat Commun, 2022, 13(1): 6467. DOI: 10.1038/s41467-022-34012-2.
|
[19] |
Cai M, Song XL, Li XA, et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer[J]. Drug Resist Updat, 2023, 68: 100962. DOI: 10.1016/j.drup.2023.100962.
|
[20] |
Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298-305. DOI: 10.1038/nm.4045.
|
[21] |
De Sarkar N, Patton RD, Doebley AL, et al. Nucleosome patterns in circulating tumor DNA reveal transcriptional regulation of advanced prostate cancer phenotypes[J]. Cancer Discov, 2023, 13(3): 632-653. DOI: 10.1158/2159-8290.CD-22-0692.
|
[22] |
Tukachinsky H, Madison RW, Chung JH, et al. Genomic analysis of circulating tumor DNA in 3, 334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms[J]. Clin Cancer Res, 2021, 27(11): 3094-3105. DOI: 10.1158/1078-0432.CCR-20-4805.
|
[23] |
Buttigliero C, Tucci M, Bertaglia V, et al. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer[J]. Cancer Treat Rev, 2015, 41(10): 884-892. DOI: 10.1016/j.ctrv.2015.08.002.
|
[24] |
Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer[J]. Cancer Discov, 2018, 8(4): 444-457. DOI: 10.1158/2159-8290.CD-17-0937.
|
[25] |
Stejskal P, Goodarzi H, Srovnal J, et al. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance[J]. Mol Cancer, 2023, 22(1): 15. DOI: 10.1186/s12943-022-01710-w.
|
[26] |
Mithraprabhu S, Morley R, Khong T, et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients[J]. Leukemia, 2019, 33(8): 2022-2033. DOI: 10.1038/s41375-019-0469-x.
|
[27] |
Di Martino MT, Arbitrio M, Caracciolo D, et al. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: a systematic review[J]. Mol Ther Nucleic Acids, 2022, 27: 1191-1224. DOI: 10.1016/j.omtn.2022.02.005.
|
[28] |
Lee JH, Wang R, Xiong F, et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation[J]. Mol Cell, 2021, 81(16): 3368-3385.e9. DOI: 10.1016/j.molcel.2021.07.024.
|
[29] |
Zhao Y, Wen S, Li H, et al. Enhancer RNA promotes resistance to radiotherapy in bone-metastatic prostate cancer by m6A modification[J]. Theranostics, 2023, 13(2): 596-610. DOI: 10.7150/thno.78687.
|
[30] |
Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance[J]. Signal Transduct Target Ther, 2021, 6(1): 404. DOI: 10.1038/s41392-021-00817-8.
|
[31] |
Deng Z, Wu S, Wang Y, et al. Circulating tumor cell isolation for cancer diagnosis and prognosis[J]. EBioMedicine, 2022, 83: 104237. DOI: 10.1016/j.ebiom.2022.104237.
|
[32] |
Miyamoto DT, Lee RJ, Kalinich M, et al. An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer[J]. Cancer Discov, 2018, 8(3): 288-303. DOI: 10.1158/2159-8290.CD-16-1406.
|
[33] |
van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. DOI: 10.1038/nrm.2017.125.
|
[34] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. DOI: 10.1126/science.aau6977.
|
[35] |
Pang B, Wang Q, Chen H, et al. Proteomic identification of small extracellular vesicle proteins LAMB1 and histone H4 for prostate cancer diagnosis and risk stratification[J]. Adv Sci (Weinh), 2024, 11(23): e2402509. DOI: 10.1002/advs.202402509.
|
[36] |
Liu P, Wang W, Wang F, et al. Alterations of plasma exosomal proteins and motabolies are associated with the progression of castration-resistant prostate cancer[J]. J Transl Med, 2023, 21(1): 40. DOI: 10.1186/s12967-022-03860-3.
|
[37] |
Lehto TK, Kovanen RM, Lintula S, et al. Prognostic impact of kallikrein-related peptidase transcript levels in prostate cancer[J]. Int J Cancer, 2023, 153(4): 867-881. DOI: 10.1002/ijc.34551.
|
[38] |
Thorek DLJ, Evans MJ, Carlsson SV, et al. Prostate-specific kallikrein-related peptidases and their relation to prostate cancer biology and detection. Established relevance and emerging roles[J]. Thromb Haemost, 2013, 110(3): 484-492. DOI: 10.1160/TH13-04-0275.
|
[39] |
Auvinen A, Tammela TLJ, Mirtti T, et al. Prostate cancer screening with PSA, kallikrein panel, and MRI: the ProScreen randomized trial[J]. JAMA, 2024, 331(17): 1452-1459. DOI: 10.1001/jama.2024.3841.
|
[40] |
Bryant RJ, Sjoberg DD, Vickers AJ, et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study[J]. J Natl Cancer Inst, 2015, 107(7): djv095. DOI: 10.1093/jnci/djv095.
|
[41] |
Kim WT, Kim YH, Jeong P, et al. Urinary cell-free nucleic acid IQGAP3: a new non-invasive diagnostic marker for bladder cancer[J]. Oncotarget, 2018, 9(18): 14354-14365. DOI: 10.18632/oncotarget.24436.
|
[42] |
Mugoni V, Ciani Y, Nardella C, et al. Circulating RNAs in prostate cancer patients[J]. Cancer Lett, 2022, 524: 57-69. DOI: 10.1016/j.canlet.2021.10.011.
|
[43] |
Lu T, Li J. Clinical applications of urinary cell-free DNA in cancer: current insights and promising future[J]. Am J Cancer Res, 2017, 7(11): 2318-2332.
|
[44] |
Zhao F, Olkhov-Mitsel E, van der Kwast T, et al. Urinary DNA methylation biomarkers for noninvasive prediction of aggressive disease in patients with prostate cancer on active surveillance[J]. J Urol, 2017, 197(2): 335-341. DOI: 10.1016/j.juro.2016.08.081.
|
[45] |
Stuopelyte K, Daniunaite K, Bakavicius A, et al. The utility of urine-circulating miRNAs for detection of prostate cancer[J]. Br J Cancer, 2016, 115(6): 707-715. DOI: 10.1038/bjc.2016.233.
|
[46] |
Clos-Garcia M, Loizaga-Iriarte A, Zuñiga-Garcia P, et al. Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression[J]. J Extracell Vesicles, 2018, 7(1): 1470442. DOI: 10.1080/20013078.2018.1470442.
|
[47] |
Lima AR, Pinto J, Amaro F, et al. Advances and perspectives in prostate cancer biomarker discovery in the last 5 years through tissue and urine metabolomics[J]. Metabolites, 2021, 11(3): 181. DOI: 10.3390/metabo11030181.
|
[48] |
Tuong ZK, Loudon KW, Berry B, et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer[J]. Cell Rep, 2021, 37(12): 110132. DOI: 10.1016/j.celrep.2021.110132.
|
[49] |
Yun KI, Pak UG, Han TS, et al. Determination of prostatic fluid citrate concentration using peroxidase-like activity of a peroxotitanium complex[J]. Anal Biochem, 2023, 672: 115152. DOI: 10.1016/j.ab.2023.115152.
|
[50] |
Zagoskin MV, Davis RE, Mukha DV. Double stranded RNA in human seminal plasma[J]. Front Genet, 2017, 8: 154. DOI: 10.3389/fgene.2017.00154.
|
[51] |
Ruiz-Plazas X, Altuna-Coy A, Alves-Santiago M, et al. Liquid biopsy-based exo-oncomiRNAs can predict prostate cancer aggressiveness[J]. Cancers (Basel), 2021, 13(2): 250. DOI: 10.3390/cancers13020250.
|
[52] |
Wang TT, Abelson S, Zou J, et al. High efficiency error suppression for accurate detection of low-frequency variants[J]. Nucleic Acids Res, 2019, 47(15): e87. DOI: 10.1093/nar/gkz474.
|
[53] |
Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic-implementation issues and future challenges[J]. Nat Rev Clin Oncol, 2021, 18(5): 297-312. DOI: 10.1038/s41571-020-00457-x.
|