切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 485 -488. doi: 10.3877/cma.j.issn.1674-3253.2020.06.020

所属专题: 总编推荐 文献

综述

DNMT1在前列腺癌中相关研究进展
江骏斌1, 陈征1, 卓育敏1,()   
  1. 1. 暨南大学附属第一医院泌尿外科
  • 收稿日期:2020-02-01 出版日期:2020-12-01
  • 通信作者: 卓育敏
  • 基金资助:
    国家自然科学基金青年项目(81902615); 广东省青年优秀人才国际培养计划博士后项目(2019); 暨南大学附属第一医院博士后科研启动项目(809011); 暨南大学附属第一医院领航专科建设专项(711006)

The research progress of DNMT1 in prostate cancer

Junbin Jiang1, Zheng Chen1, Yumin Zhuo1()   

  • Received:2020-02-01 Published:2020-12-01
  • Corresponding author: Yumin Zhuo
引用本文:

江骏斌, 陈征, 卓育敏. DNMT1在前列腺癌中相关研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(06): 485-488.

Junbin Jiang, Zheng Chen, Yumin Zhuo. The research progress of DNMT1 in prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2020, 14(06): 485-488.

[1]
Joseph DBK, Strand DW, Vezina CM. DNA methylation in development and disease: an overview for prostate researchers[J]. Am J Clin Exp Urol, 2018,6(6): 197-218.
[2]
Hendrich B, Tweedie S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals[J]. Trends Genet, 2003, 19(5): 269-277.
[3]
Schübeler D . Function and information content of DNA methylation[J]. Nature, 2015, 517(7534): 321-326.
[4]
Zhang ZM, Lu R, Wang PC, et al. Structural basis for DNMT3A-mediated de novo DNA methylation[J]. Nature, 2018, 554(7692): 387-391.
[5]
Ren WD, Gao LF, Song JK. Structural basis of DNMT1 and DNMT3A-Mediated DNA methylation[J]. Genes, 2018, 9(12), 62. DOI: 10.3390/genes9120620
[6]
Liu RE, Lang ZB. The mechanism and function of active DNA demethylation in plants[J]. J Integr Plant Biol, 2020, 62(1): 148-159.
[7]
Patra SK, Patra A, Zhao H, et al. DNA methyltransferase and demethylase in human prostate cancer[J]. Mol Carcinog, 2002, 33(3): 163-171.
[8]
Puto LA, Benner C,Hunter T. The DAXX co-repressor is directly recruited to active regulatory elements genome-wide to regulate autophagy programs in a model of human prostate cancer[J]. Oncoscience, 2015, 2(4): 362-72.
[9]
Hsieh P, Yamane K. DNA mismatch repair: Molecular mechanism, cancer, and ageing[J]. Mech Ageing Dev, 2008, 129(7-8): 391-407.
[10]
Basu S, Majumder S, Bhowal A, et al. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia[J]. PLoS One, 2015, 10(5): e0125560.
[11]
Feng XL, Wang ZM, Fillmore R, et al. MiR-200, a new star miRNA in human cancer[J]. Cancer Lett, 2014, 344(2): 166-173.
[12]
Lynch S, O'Neill K, McKenna M, et al. Regulation of mir-200c and mir-141 by methylation in prostate cancer[J]. Prostate, 2016, 76(13): 1146-1159.
[13]
Daniunaite K, Dubikaityte M, Gibas P, et al. Clinical significance of miRNA host gene promoter methylation in prostate cancer[J]. Hum Mol Genet, 2017, 26(13): 2451-2461.
[14]
Hoffmann MJ, Engers R, Florl AR, et al. Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer[J]. Cancer Biol Ther, 2007, 6(9): 1403-1412.
[15]
Gravina GL, Ranieri G, Muzi P, et al. Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells[J]. Oncol Rep, 2013, 29(3): 1189-1195.
[16]
Chen MF, Chen WC, Chang YJ, et al. Role of DNA methyltransferase 1 in hormone-resistant prostate cancer[J]. J Mol Med(Berl), 2010, 88(9): 953-962.
[17]
Theodore SC, Davis M, Zhao F, et al. MicroRNA profiling of novel African American and Caucasian Prostate Cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltransferase 1[J]. Oncotarget, 2014, 5(11): 3512-3525.
[18]
Gao X, Mao YH, Xiao CT, et al. Calpain-2 triggers prostate cancer metastasis via enhancing CRMP4 promoter methylation through NF-κB/DNMT1 signaling pathway[J]. Prostate, 2018, 78(9): 682-90.
[19]
Sengupta D, Deb M, Patra SK. Antagonistic activities of miR-148a and DNMT1: Ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival[J]. Gene, 2018, 660(20): 68-79.
[20]
Valdez CD, Kunju L, Daignault S, et al. The E2F1/DNMT1 Axis Is Associated With the Development of AR Negative Castration Resistant Prostate Cancer[J]. Prostate, 2013, 73(16): 1776-1785.
[21]
Tzelepi V, Logotheti S, Papakonstantinou E, et al. Epigenetics and prostate cancer: Defining the timing of DNA methyltransferases deregulation during prostate cancer progression[J]. Pathology, 2020, 52(2): 218-227.
[22]
Li LP, Li SQ. miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1[J]. Oncol Let, 2018, 16(2): 1715-1721.
[23]
Nagesh PKB, Chowdhury P, Hatami E, et al.miRNA-205 Nanoformulation Sensitizes Prostate Cancer Cells to Chemotherapy[J]. Cancers, 2018, 10(9): 289.
[24]
Lynch S, O'Neill K, McKenna M, et al. Investigation of miR-205 expression and its methylation status in prostate cancer[J]. Cancer Res, 2018, 78(13): 4418.
[25]
Yaqinuddin A, Qureshi SA, Qazi R, et al. DNMT1 Silencing Affects Locus Specific DNA Methylation and Increases Prostate Cancer Derived PC3 Cell Invasiveness[J]. J Urol, 2009, 182(2): 756-761.
[26]
James SR, Cedeno CD, Sharma A, et al. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11[J]. Epigenetics, 2013, 8(8): 849-863.
[27]
Lee E, Wang JC, Yumoto K, et al. DNMT1 Regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis[J]. Neoplasia, 2016, 18(9): 553-566.
[28]
Lee E, Wang JC, Jung Y, et al. Reduction of two histone marks, H3k9me3 and H3k27me3 by epidrug induces neuroendocrine differentiation in prostate cancer[J]. J Cell Biochem, 2018, 119(4): 3697-3705.
[29]
Melnik BC. Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer[J]. Nutr Metabo(Lond), 2017, 14: 55.
[30]
Lin HY, Kuo YC, Weng YI, et al. Activation of Silenced Tumor Suppressor Genes in Prostate Cancer Cells by a Novel Energy Restriction-Mimetic Agent[J]. Prostate, 2012, 72(16): 1767-1778.
[31]
Agarwal S, Amin KS, Jagadeesh S, et al. Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells[J]. Mol Cancer, 2013, 12: 99.
[32]
Boyanapalli S, Li WJ, Francisco Fuentes, et al. Epigenetic reactivation of RASSF1A by phenethyl isothiocyanate (PEITC) and promotion of apoptosis in LNCaP cells[J]. Pharmacol Res, 2016, 114: 175-184.
[33]
Kumar SR, Bryan JN, Esebua M, et al. Testis specific Y-like 5: gene expression, methylation and implications for drug sensitivity in prostate carcinoma[J]. BMC Cancer, 2017, 17(1): 158.
[34]
Graça I, Sousa EJ, Costa-Pinheiro P, et al. Anti-neoplastic properties of hydralazine in prostate cancer[J]. Onco Target, 2014, 5(15): 5950-5964.
[35]
Sharma V, Verma V, Lal N, et al. Disulfiram and its novel derivative sensitize prostate cancer cells to the growth regulatory mechanisms of the cell by re-expressing the epigenetically repressed tumor suppressor -estrogen receptor β[J]. Mol Carcinog, 2016, 55(11): 1843-1857.
[36]
Xiang ST, Zoua PL, Tang Q, et al. HOTAIR-mediated reciprocal regulation of EZH2 and DNMT1 contribute to polyphyllin I-inhibited growth of castration-resistant prostate cancer cells in vitro and in vivo[J]. Biochim Biophys Acta Gen Subj, 2017, 1862(3): 589-599.
[37]
Kardooni H, Gonzalez-Gualda E, Stylianakis E, et al. CRISPR-mediated reactivation of DKK3 expression attenuates TGF-β signaling in prostate cancer[J]. Cancers, 2018, 10(6): 165.
[38]
Du YF, Liang L, Shi Y, et al. Multi-target siRNA based on DNMT3A/B homologous conserved region influences cell cycle and apoptosis of human prostate cancer cell line TSU-PR1[J]. Genet Mol Biol, 2012, 35(1): 164-171.
[39]
Li X, Lv JC, Liu S. MCM3AP-AS1 KD Inhibits Proliferation, Invasion, and Migration of PCa Cells via DNMT1/DNMT3 (A/B) Methylation-Mediated Upregulation of NPY1R[J]. Mol Ther Nucleic Acids, 2020, 20: 265-278.
[40]
Yuan Y, Du Y, Wang L, et al. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation[J]. J Cancer, 2020, 11(12): 3588-3595.
[41]
Cai JR, Yang F, Zhan HL, et al. RNA m6A Methyltransferase METTL3 Promotes The Growth Of Prostate Cancer By Regulating Hedgehog Pathway[J]. Onco Targets Ther, 2019, 12: 9143-9152.
[42]
Ma XX, Cao ZG, Zhao SL. m6A methyltransferase METTL3 promotes the progression of prostate cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci, 2020, 24(7): 3565-3571.
[43]
Barros-Silva D, Lobo J, Guimarães-Teixeira C, et al. VIRMA-Dependent N6-Methyladenosine Modifications Regulate the Expression of Long Non-Coding RNAs CCAT1 and CCAT2 in Prostate Cancer[J]. Cancers (Basel), 2020, 12(4).
[44]
Li JF, Meng S, Xu MJ, et al. Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels[J]. Oncotarget, 2018, 9(3): 3752-3764.
[1] 杨倩, 李秋洋, 李楠, 罗渝昆, 唐杰. 基于超声纹理影像转录组学预测前列腺癌[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 319-326.
[2] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[3] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[4] 王功炜, 李书豪, 魏松, 吕博然, 胡成. 溶瘤病毒M1对不同前列腺癌细胞杀伤效果的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 626-632.
[5] 施一辉, 张平新, 朱勇, 杨德林. 机器人辅助前列腺根治术后切缘阳性的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 633-637.
[6] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[7] 杨勇军, 曾一鸣, 贺显雅, 卢强, 李远伟. ASA分级≥Ⅲ级患者局麻经会阴前列腺多模态影像融合穿刺的安全性和有效性[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 441-447.
[8] 李鑫钊, 张廷涛, 朱峰, 刘金山, 刘大闯. 血纤维蛋白原、D-二聚体及碱性磷酸酶诊断前列腺癌骨转移的价值分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 459-463.
[9] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[10] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[11] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[12] 陈钊, 钟克力, 江志鹏, 傅宇翔, 范宝航, 吴文飞. 前列腺癌术后腹股沟疝的发生率及危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 396-401.
[13] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[14] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[15] 陈学敬, 周立娟, 赵宏, 张莉, 孙组钰, 车南颖. SHOX2和RASSF1A基因甲基化检测联合细胞学检查在支气管灌洗液标本诊断肺癌中的应用价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 139-143.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?