切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 205 -215. doi: 10.3877/cma.j.issn.1674-3253.2025.02.014

临床研究

胆固醇生物合成相关基因对前列腺癌预后和治疗的意义
万颂1, 刘璇1, 黄源兴1, 江文聪1, 周宇林1, 习明1,()   
  1. 1. 510800 广州市花都区人民医院泌尿外科
  • 收稿日期:2025-01-07 出版日期:2025-04-01
  • 通信作者: 习明
  • 基金资助:
    广州市医学重点学科建设项目(2025-2027)广州市科技计划项目(202201010797)广州市花都区人民医院院内科研基金项目(2022B01,2022C01)

Prognostic and therapeutic significance of cholesterol biosynthesis-related genes in prostate cancer

Song Wan1, Xuan Liu1, Yuanxing Huang1, Wencong Jiang1, Yulin Zhou1, Ming Xi1,()   

  1. 1. Department of Urology,Huadu District People's Hospital of Guangzhou,Guangzhou 510800,China
  • Received:2025-01-07 Published:2025-04-01
  • Corresponding author: Ming Xi
引用本文:

万颂, 刘璇, 黄源兴, 江文聪, 周宇林, 习明. 胆固醇生物合成相关基因对前列腺癌预后和治疗的意义[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 205-215.

Song Wan, Xuan Liu, Yuanxing Huang, Wencong Jiang, Yulin Zhou, Ming Xi. Prognostic and therapeutic significance of cholesterol biosynthesis-related genes in prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2025, 19(02): 205-215.

目的

探讨胆固醇生物合成相关基因(CBRG)在前列腺癌(PCa)中的预后和治疗意义。

方法

利用TCGA 数据库对胆固醇生物合成相关基因在PCa 和正常组织中的差异表达进行分析,并通过LASSO 及多因素Cox 回归分析构建风险评分预后模型。进一步通过单因素、多因素Cox 回归分析验证模型对PCa 的独立预后价值。根据风险评分的中位值将PCa 患者分为高风险组和低风险组。利用GSEA 分析观察高低风险组之间的差异富集通路。使用CIBERSORT 算法评估高低风险组肿瘤免疫细胞浸润情况。通过GDSC 数据库筛选与风险评分相关的潜在药物,并通过Spearman 检验分析风险评分与药物半数抑制浓度(IC50)的关联。Kaplan-Meier 比较特征基因高、低表达者的无病生存期(DFS)。Wilcoxon 检验特征基因在恩扎鲁胺耐药与未耐药中的表达差异。

结果

构建了包含PMVK、ACSL3、ABCG1、HMGCS2 和CYP11A1 基因的预后模型,该模型在预测1 年、3 年和5 年DFS 的AUC 分别为0.74、0.76 和0.72,在验证数据集中3 年和5 年的AUC 分别为0.70 和0.69。临床独立性分析发现该预后模型具有独立预测PCa 患者DFS 的能力,优于其他临床病理学特征。进一步分析PCa 患者高低风险组中肿瘤免疫细胞浸润水平的差异,结果表明在高风险组中CD8+ T 细胞、滤泡辅助性T 细胞和活化的NK 细胞的浸润水平显著降低,而初始B 细胞、静息状态的CD4+记忆T 细胞、调节性T 细胞和中性粒细胞浸润水平在高风险组显著升高。药物敏感性分析发现恩扎鲁胺、拉帕替尼等6 种药物的耐药性与风险评分呈正相关。GSEA 分析显示高风险主要富集的信号通路为氧化磷酸化、核糖体和蛋白酶体等。此外,生存分析发现HMGCS2 基因表达与患者的DFS 显著相关,对肿瘤预后有正向作用,且在恩扎鲁胺耐药患者中显著低表达。

结论

胆固醇生物合成相关特征基因是前列腺癌的独立预后标志物,HMGCS2 基因可能为潜在的治疗靶点,为前列腺癌的精准治疗提供了新思路。

Objective

To explore the prognostic and therapeutic significance of cholesterol biosynthesis-related genes (CBRG) in prostate cancer (PCa).

Methods

The differential expression of cholesterol biosynthesis-related genes in PCa and normal tissues was analyzed using the TCGA database.A risk score prognostic model was constructed through LASSO and multivariate Cox regression analysis.The independent prognostic value of the model for PCa was further validated using univariate and multivariate Cox regression analyses.PCa patients were divided into high-risk and low-risk groups based on the median value of the risk score.GSEA analysis was used to observe the differentially enriched pathways between the high-risk and low-risk groups.The CIBERSORT algorithm was employed to assess tumor immune cell infiltration in the high-risk and low-risk groups.Potential drugs associated with the risk score were screened using the GDSC database,and the correlation between the risk score and the half-maximal inhibitory concentration (IC50) of the drugs was analyzed using the Spearman test.Kaplan-Meier analysis compared the disease-free survival (DFS) of patients with high and low expression of characteristic genes.The Wilcoxon test was used to analyze the expression differences of characteristic genes in enzalutamideresistant versus non-resistant cases.

Results

A prognostic model was constructed that included the genes PMVK,ACSL3,ABCG1,HMGCS2,and CYP11A1.This model had areas under the curve (AUC) of 0.74,0.76,and 0.72 for predicting 1-year,3-year,and 5-year DFS,respectively,with AUCs of 0.70 and 0.69 in the validation dataset for 3-year and 5-year DFS,respectively.Clinical independence analysis revealed that this prognostic model has the ability to independently predict DFS in PCa patients,outperforming other clinical pathological features.Further analysis of tumor immune cell infiltration levels in high-risk and lowrisk groups of PCa patients showed that the infiltration levels of CD8+ T cells,follicular helper T cells,and activated NK cells were significantly reduced in the high-risk group,while the infiltration levels of naïve B cells,resting CD4+ memory T cells,regulatory T cells,and neutrophils were significantly increased.Drug sensitivity analysis found that the resistance to six drugs,including enzalutamide and lapatinib,was positively correlated with the risk score.GSEA analysis indicated that the high-risk group was primarily enriched in pathways related to oxidative phosphorylation,ribosomes,and proteasomes.Additionally,survival analysis revealed a significant correlation between the expression of the HMGCS2 gene and patients' DFS,indicating a positive effect on tumor prognosis,and it was significantly downregulated in enzalutamide-resistant patients.

Conclusion

Cholesterol biosynthesis-related characteristic genes are independent prognostic markers for prostate cancer,and the HMGCS2 gene may serve as a potential therapeutic target,providing new insights for precision treatment of prostate cancer.

图1 前列腺癌和正常组织中差异表达的胆固醇生物合成相关基因筛选 注:a 为主成分分析(PCA)图显示基于TCGA-GTEx 数据集中前列腺癌(PCa)和正常组织样本的分布情况;b 为TCGA-GTEx 数据集差异表达基因火山图;c 为差异表达基因热图;d 为前列腺癌和正常组织的差异表达基因与胆固醇生物合成相关基因的韦恩图
图2 胆固醇生物合成相关基因中对前列腺癌有预后作用的特征基因筛选和预后模型构建 注:a 为差异表达的胆固醇生物合成相关基因采用LASSO 回归分析的剖面图;b 为采用10 倍交叉验证选择最优的λ 值;c 为前列腺癌中风险评分的分布情况、风险评分与生存时间的关系及5 个特征基因表达量的热图;d 为不同风险前列腺癌患者的生存曲线;e 为预后模型的ROC 曲线;f 为验证数据集(GSE116918)中前列腺癌患者的生存曲线;g 为验证数据集(GSE116918)中的预后模型的ROC 曲线
图3 前列腺癌预后风险模型的临床独立性检验 注:a 为单因素Cox 回归分析风险评分与PCa 预后关系的森林图;b 为多因素Cox 回归分析风险评分与PCa 预后关系的森林图;c 为列线图用以评估风险评分预测前列腺癌患者无病生存期的准确性;d~f 分别为1 年、3 年及5 年无病生存期校准曲线
图4 高、低风险组前列腺癌患者中肿瘤免疫细胞浸润水平 注:a 为前列腺癌患者中22 种免疫细胞的免疫评分;b 为22 种免疫细胞在TCGA 数据集中前列腺癌患者的免疫评分的分布情况;c 为22 种免疫细胞在高低风险组中的浸润差异
图5 高低风险组前列腺癌患者药物敏感性分析 注:a 为低风险组及高风险组患者中药物敏感性种类;b~g 分别为恩扎鲁胺(Enzalutamide)、全反式维甲酸(ATRA)、复瑞替尼(Foretinib)、拉帕替尼(Lapatinib)、磷脂酰肌醇-3-激酶β 亚型抑制剂(TGX221)和半胱氨酸蛋白酶抑制剂(Z-LLNle-CHO)药物敏感性与风险评分相关性分析
图6 高低风险组前列腺癌患者功能富集分析 注:a~f 分别为氧化磷酸化、核糖体、蛋白酶体、阿尔茨海默病、亨廷顿疾病和帕金森疾病相关信号通路在高风险组中显著富集
图7 五个特征基因表达与前列腺癌患者预后关系以及HMGCS2、CYP11A1 和ACSL3 基因在恩杂鲁胺耐药与未耐药的前列腺癌细胞测序基因集中的表达差异 注:a~e 分别为 HMGCS2、CYP11A1、ACSL3、ABCG1 和PMVK 基因的表达;f~h 为HMGCS2、CYP11A1 和ACSL3 基因的差异分析
[1]
Siegel RL,Miller KD,Fuchs HE,et al.Cancer statistics,2022[J].CA Cancer J Clin.2022,72(1): 7-33.DOI: 10.3322/caac.21708.
[2]
Bray F,Laversanne M,Sung H,et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3): 229-263.DOI: 10.3322/caac.21834.
[3]
Cai M,Song XL,Li XA,et al.Current therapy and drug resistance in metastatic castration-resistant prostate cancer[J].Drug Resist Updat,2023,68: 100962.DOI: 10.1016/j.drup.2023.100962.
[4]
张金萍,王栎清,王默,等.肿瘤治疗: 靶向物质代谢重编程诱导铁死亡[J].生物化学与生物物理进展,2024,51(7): 1540-1550.DOI: 10.16476/j.pibb.2023.0303.Zhang JP,Wang YQ,Wang M,et al.Tumor therapy: targeted substances metabolism reprogramming induces tumor ferroptosis[J].Prog Biochem Biophys,2024,51(7): 1540-1550.DOI: 10.16476/j.pibb.2023.0303.
[5]
Afonso MS,Machado RM,Lavrador MS,et al.Molecular pathways underlying cholesterol homeostasis[J].Nutrients,2018,10(6): 760.DOI: 10.3390/nu10060760.
[6]
吴皓玥,郑慧梅,徐姗姗,等.卵巢癌脂代谢异常及相关酶抑制剂靶向治疗研究进展[J].中国细胞生物学学报,2023,45(3): 383-396.DOI: 10.11844/cjcb.2023.03.0005.Wu HY,Zheng HM,Xu SS,et al.Abnormalities of lipid metabolism in ovarian cancer and progress of targeted therapy with related enzyme inhibitors[J].Chinese Journal of Cell Biology.2023,45(3):383-396.DOI: 10.11844/cjcb.2023.03.0005
[7]
刘雨薇,韩凯,韩铭,等.NS5ATP3 通过调节胆固醇代谢促进HepG2 细胞生长[J/OL].中国肝脏病杂志(电子版),2022,14(2):1-10.DOI: 10.3969/j.issn.1674-7380.2022.02.001.Liu YW,Han K.,Han M.,et al.NS5ATP3 promotes the growth of HepG2 cells by regulating cholesterol metabolism.Chinese Journal of Liver Diseases (electronic version)[J/OL].2022,14(2): 1-10.DOI:10.3969/j.issn.1674-7380.2022.02.001
[8]
黄慧敏,杨勇,魏英,等.siRNA 沉默SCD1 基因对MCF-7 细胞增殖、凋亡及脂质代谢的影响[J].中国免疫学杂志,2021,37(5):513-518.DOI: 10.3969/j.issn.1000-484X.2021.05.001.Huang HM,Yang Y,Wei Y,et al.Effect of siRNA-mediated SCD1 gene silencing on proliferation,apoptosis and lipid metabolism of MCF-7 cells[J].Chin J Immunol,2021,37(5): 513-518.DOI:10.3969/j.issn.1000-484X.2021.05.001.
[9]
高杰,丁留成,卫中庆.脂质代谢在去势抵抗性前列腺癌中的研究进展[J].东南国防医药,2021,23(2): 169-174.DOI: 10.3969/j.issn.1672-271X.2021.02.013.Gao J,Ding LC,Wei ZQ.Research progress of lipid metabolism in castration-resistant prostate cancer[J].Mil Med J SouthEast China,2021,23(2): 169-174.DOI: 10.3969/j.issn.1672-271X.2021.02.013.
[10]
徐媛,侯霜,陈乾,等.肾移植受者代谢标志物与血脂水平的相关性研究[J].器官移植,2024,15(4): 599-606.Xu Y,Hou S,Chen Q,et al.Correlation between metabolic markers and blood lipid levels in kidney transplant recipients[J].Organ Transplant,2024,15(4): 599-606.
[11]
Xu H,Zhou S,Tang Q,et al.Cholesterol metabolism: New functions and therapeutic approaches in cancer[J].Biochim Biophys Acta Rev Cancer,2020,1874(1): 188394.DOI: 10.1016/j.bbcan.2020.188394.
[12]
Huang B,Song BL,Xu C.Cholesterol metabolism in cancer:mechanisms and therapeutic opportunities[J].Nat Metab,2020,2(2):132-141.DOI: 10.1038/s42255-020-0174-0.
[13]
Kuzu OF,Noory MA,Robertson GP.The role of cholesterol in cancer[J].Cancer Res,2016,76(8): 2063-2070.DOI: 10.1158/0008-5472.CAN-15-2613.
[14]
闭原桦,陈健宁,黄君庭,等.EB 病毒对胃癌细胞增殖、凋亡和脂代谢的影响[J].中山大学学报(医学版),2019,40(5): 664-672.DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2019.0094.Bi YH,Chen JN,Huang JT,et al.Effects of Epstein-Barr virus on proliferation,apoptosis and lipid metabolism of gastric cancer cells[J].J Sun Yat-sen Univ (Med Sci),2019,40(5): 664-672.DOI:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2019.0094.
[15]
Park SS,Kwon MR,Ju EJ,et al.Targeting phosphomevalonate kinase enhances radiosensitivity via ubiquitination of the replication protein A1 in lung cancer cells[J].Cancer Sci,2023,114(9): 3583-3594.DOI: 10.1111/cas.15896.
[16]
Zhou X,Chen Z,Yu Y,et al.Increases in 4-acetaminobutyric acid generated by phosphomevalonate kinase suppress CD8+ T cell activation and allow tumor immune escape[J].Adv Sci,2024,11(43):e2403629.DOI: 10.1002/advs.202403629.
[17]
郑宇锟,王光忠,吴骁伟,等.基于甲羟戊酸途径的盐酸小檗碱体外抗肺癌细胞药效及机制[J].中国实验方剂学杂志,2022,28(13): 92-101.DOI: 10.13422/j.cnki.syfjx.20221228.Zheng YK,Wang GZ,Wu XW,et al.Effect and mechanism of berberine hydrochloride against lung cancer cells in vitro based on mevalonate pathway[J].Chin J Exp Tradit Med Formulae,2022,28(13): 92-101.DOI: 10.13422/j.cnki.syfjx.20221228.
[18]
Chocry M,Leloup L,Parat F,et al.Gemcitabine: an alternative treatment for Oxaliplatin-resistant colorectal cancer[J].Cancers(Basel),2022,14(23):5894.DOI: 10.3390/cancers14235894.
[19]
Yang Y,Zhu T,Wang X,et al.ACSL3 and ACSL4,distinct roles in ferroptosis and cancers[J].Cancers (Basel).2022,14(23): 5896.DOI:10.3390/cancers14235896.
[20]
Kerr ID,Haider AJ,Gelissen IC.The ABCG family of membraneassociated transporters: you don't have to be big to be mighty[J].Br J Pharmacol,2011,164(7): 1767-1779.DOI: 10.1111/j.1476-5381.2010.01177.x.
[21]
Tian C,Huang D,Yu Y,et al.ABCG1 as a potential oncogene in lung cancer[J].Exp Ther Med,2017,13(6): 3189-3194.DOI: 10.3892/etm.2017.4393.
[22]
Wang Y,Liu H,Ready NE,et al.Genetic variants in ABCG1 are associated with survival of nonsmall-cell lung cancer patients[J].Int J Cancer,2016,138(11): 2592-2601.DOI: 10.1002/ijc.29991.
[23]
Puchalska P,Crawford PA.Multi-dimensional roles of ketone bodies in fuel metabolism,signaling,and therapeutics[J].Cell Metab,2017,25(2): 262-284.DOI: 10.1016/j.cmet.2016.12.022.
[24]
Suk FM,Wu CY,Chiu WC,et al.HMGCS2 mediation of ketone levels affects sorafenib treatment efficacy in liver cancer cells[J].Molecules.2022,27(22): 8015.DOI: 10.3390/molecules27228015.
[25]
Jeon SM,Shin EA.Exploring vitamin D metabolism and function in cancer[J].Exp Mol Med,2018,50(4): 1-14.DOI: 10.1038/s12276-018-0038-9.
[26]
Karimaa M,Riikonen R,Kettunen H,et al.First-in-class small molecule to inhibit CYP11A1 and steroid hormone biosynthesis[J].Mol Cancer Ther,2022,21(12): 1765-1776.DOI: 10.1158/1535-7163.mct-22-0115.
[27]
Friedmann Angeli JP,Krysko DV,Conrad M.Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion[J].Nat Rev Cancer,2019,19(7): 405-414.DOI: 10.1038/s41568-019-0149-1.
[28]
Ma X,Bi E,Lu Y,et al.Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment[J].Cell Metab,2019,30(1): 143-156.e5.DOI: 10.1016/j.cmet.2019.04.002.
[29]
Fonseca-Alves CE,Leis-Filho AF,Lacerda ZA,et al.Lapatinib antitumor effect is associated with PI3K and MAPK pathway: an analysis in human and canine prostate cancer cells[J].PLoS One,2024,19(4): e0297043.DOI: 10.1371/journal.pone.0297043.
[30]
Schmidt KT,Huitema ADR,Chau CH,et al.Resistance to secondgeneration androgen receptor antagonists in prostate cancer[J].Nat Rev Urol,2021,18(4): 209-226.DOI: 10.1038/s41585-021-00438-4.
[31]
Herst PM,Carson GM,Eccles DA,et al.Bioenergetic and metabolic adaptation in tumor progression and metastasis[J].Front Oncol,2022,12: 857686.DOI: 10.3389/fonc.2022.857686.
[1] 吴楚营, 叶凯. 不同部位胃肠道间质瘤的腹腔镜手术策略[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 224-227.
[2] 杨培容, 潘刚, 周春霞. 胰腺癌术后胰瘘的危险因素及治疗进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 228-230.
[3] 潘麒文, 何立儒. 前列腺癌放射治疗前沿进展荟萃[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 279-279.
[4] 李永红, 王骏, 肖恒军. 2025-NCCN前列腺癌诊治指南更新解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 129-133.
[5] 邱皓炜, 徐臻, 肖泽秀, 夏燕, 查高峰, 庞俊. 前列腺癌mRNA 疫苗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 134-139.
[6] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[7] 杨健, 杨璐. 体液外泌体在前列腺癌诊断中的应用前景[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 146-151.
[8] 董振阳, 瞿旻, 王燕, 张韻, 高旭. 序贯多学科会诊模式在前列腺癌全程管理中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 152-158.
[9] 周松, 蒋湘勇, 康海, 杨科, 危安, 唐振华, 李铁求. 超声造影诊断前列腺癌的应用价值:一项荟萃分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 159-166.
[10] 潘永昇, 江杰, 曹栋梁, 季陈, 姜丽丽, 陈建刚, 朱华, 郑兵. 经会阴认知融合靶向穿刺在PI-RADS V2.1评分为五分患者中的诊断价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 167-173.
[11] 刘康寿, 曹明溶, 孙健. 钇90选择性内放射治疗肝内胆管癌的现状与展望[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 197-202.
[12] 陈博滔, 胡宽, 毛先海. 胆囊癌肿瘤微环境与系统治疗[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 203-208.
[13] 吴春霖, 侯一夫, 陈凯, 赵冀, 唐世杰, 杨洪吉. 肝动脉灌注化疗联合PD-1/TKI 治疗不可切除性肝癌的安全性和疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 217-224.
[14] 曾士桃, 严庆, 廖珊, 陈焕伟. 肝动脉灌注化疗联合仑伐替尼及PD-1抑制剂与肝动脉灌注化疗联合仑伐替尼治疗不可切除肝癌的疗效比较[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 225-231.
[15] 杨陈凤麟, 张潇, 丁洁茹, 胡文, 李尧, 陈品初, 王泽桐, 张起帆. 转化治疗后肝癌肝切除患者术后自发性胆漏发生原因初步探讨[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 256-261.
阅读次数
全文


摘要