切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 633 -641. doi: 10.3877/cma.j.issn.1674-3253.2023.06.017

实验研究

光动力纳米载体联合si-P3H4治疗膀胱癌的初步探索
顾志波, 郝林, 陆明, 陈建刚()   
  1. 226000 江苏,南通市第一人民医院(南通大学第二附属医院)泌尿外科
    221009 江苏,徐州市中心医院(徐州医科大学徐州临床学院)泌尿外科
  • 收稿日期:2022-08-18 出版日期:2023-12-01
  • 通信作者: 陈建刚
  • 基金资助:
    2020年南通市科技局面上项目(MS12020025); 江苏省自然科学基金面上项目(BK20221220)

Photodynamic nanocarriers combined with siP3H4 for precise targeting therapy in the treatment of bladder cancer: a pilot study

Zhibo Gu, lin Hao, Ming Lu, Jiangang Chen()   

  1. Department of Urology, Nantong First People's Hospital (the Second Affiliated Hospital of Nantong University), Jiangsu 226200, China
    Department of Urology, Xuzhou Central Hospital (Xuzhou Clinical College of Xuzhou Medical University), Jiangsu 221009, China
  • Received:2022-08-18 Published:2023-12-01
  • Corresponding author: Jiangang Chen
引用本文:

顾志波, 郝林, 陆明, 陈建刚. 光动力纳米载体联合si-P3H4治疗膀胱癌的初步探索[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 633-641.

Zhibo Gu, lin Hao, Ming Lu, Jiangang Chen. Photodynamic nanocarriers combined with siP3H4 for precise targeting therapy in the treatment of bladder cancer: a pilot study[J]. Chinese Journal of Endourology(Electronic Edition), 2023, 17(06): 633-641.

目的

探讨光动力纳米载体联合小干扰-脯氨基3-羟化酶家族成员(si-P3H4)精准治疗膀胱肿瘤的疗效。

方法

RT-qPCR和Western Blot分别检测转染siRNA后膀胱癌EJ和T24细胞株中的P3H4mRNA和蛋白表达量。CCK8、划痕实验和Transwell小室检测敲低P3H4后对EJ和T24膀胱癌细胞增殖、迁移、侵袭的影响。以氨基树脂为底物合成高分子纳米载体CH3-R9-cRGD,将纳米载体药物包裹si-P3H4、光敏剂Ce6转染至膀胱癌细胞(HCV29细胞),检测不同pH及激光照射条件下药物体外释放情况。同时,探索纳米药物与膀胱癌细胞靶向结合内吞机制,检测细胞内活性氧(ROS)水平。将不同分组纳米复合物转染至膀胱癌细胞,CCK8法检测各组细胞活力,体内试验进一步探索不同分组纳米复合物肿瘤抑制能力。

结果

RT-qPCR显示EJ组和T24组P3H4mRNA表达量分别降低至对照组的68.4%和57.1%。Western Blot显示EJ组和T24组P3H4蛋白表达较阴性对照组分别下降至20.3%和36.5%。CCK8实验吸光度A值为EJ组相对于对照组96 h:(0.785±0.084) vs (1.358±0.064),t=12.06,P<0.01;T24组相对于对照组96 h:(0.833±0.065) vs (1.346±0.545),t=13.415,P<0.01。划痕实验细胞愈合率:EJ组相对于对照组为(47.8±4.32)% vs (68.60±4.39)%,t=7.545,P<0.01;T24组相对于对照组为(50.40±3.64)% vs (70.61±3.85)%,t=8.521,P<0.01。Transwell细胞穿膜数:EJ组相对于对照组为[(302.71±7.56) vs (130.42±3.95)]个,t=53.40,P<0.01;T24组[(99.56±4.50) vs (35.22±6.28)]个,t=24.974,P<0.01。成像结果显示多肽纳米载体上具有良好的渗透性,可以同时将si-P3H4和Ce6靶向运输至膀胱癌细胞中。CCK8法检测结果显示当纳米复合物CH3-R9-cRGD&Ce6的浓度为50 μg/ml时,激光照射组的细胞活力均低于无激光照射组,且纳米探针+激光+siP3H4组细胞活力最低(F=299.57,P<0.05)。体内试验显示纳米复合物/si-P3H4/激光抑制肿瘤细胞增强效果最为显著。

结论

纳米载体可以同时将si-P3H4和Ce6靶向运输至膀胱癌细胞中抑制细胞增殖,实现对膀胱癌的综合治疗。光动力和基因治疗在膀胱肿瘤治疗领域具有互补优势,两者联用可达到协同增强肿瘤治疗的效果,可以将其应用于膀胱尿路上皮癌的治疗。

Objective

To explore the efficacy of photodynamic nanocarriers combined with si-P3H4 in the precise treatment of bladder tumors.

Methods

RT-qPCR and Western Blot were used to detect the expression of P3H4 mRNA and protein in EJ and T24 cell lines of bladder cancer after siRNA transfection. CCK8, scratch test and Transwell chamber were used to detect the effect of P3H4 knockdown on proliferation, migration and invasion of EJ and T24 bladder cancer cells. The polymer nanocarrier CH3-R9-cRGD was synthesized with amino resin as substrate, and the drug encapsulated si-P3H4 and photosensitizer Ce6 were transfected into bladder cancer cells (HCV29 cells) to detect the drug release in vitro under different pH and laser irradiation conditions. At the same time, the mechanism of targeted binding endocytosis of nano drugs and bladder cancer cells was explored, and the level of intracellular reactive oxygen species (ROS) was detected. Different groups of nanocomposites were transfected into bladder cancer cells, and the cell viability of each group was detected by CCK8 method. In vivo experiments were conducted to further explore of the tumor inhibitory ability of different groups of nanocomposites.

Results

The P3H4mRNA expression levels in the EJ group and T24 group decreased to 68.4% and 57.1% of the control group, respectively, according to RT qPCR. Western blot showed that the expression of P3H4 protein in the EJ and T24 groups decreased to 20.3% and 36.5%, respectively, compared to the negative control group. The absorbance A value of CCK8 experiment was (0.785 ± 0.084) vs (1.358 ± 0.064) in the EJ group compared to the control group at 96 hours, t=12.06, P<0.01; Compared to the control group at 96 hours, the T24 group showed (0.833 ± 0.065) vs (1.346 ± 0.545), t=13.415, P<0.01. The cell healing rate in the scratch experiment was (47.8 ± 4.32)% in the EJ group compared to the control group, (68.60 ± 4.39)%, t=7.545, P<0.01; The T24 group compared to the control group was (50.40 ± 3.64)% vs (70.61 ± 3.85)%, t=8.521, P<0.01. Transwell cell penetration count: The EJ group had [(302.71±7.56) vs (130.42±3.95)] compared to the control group; t=53.40, P<0.01; T24 group [(99.56±4.50) vs (35.22±6.28)], t=24.974, P<0.01. The imaging results showed that the peptide nanocarrier had good permeability and could target si-P3H4 and Ce6 into bladder cancer cells at the same time. The CCK8 method detection results showed that when the concentration of the nanocomposite CH3-R9-cRGD&Ce6 is 50 μ At g/mL, the cell viability of the laser irradiated group was lower than that of the non laser irradiated group, and the cell viability of the nanoprobe+laser+siP3H4 group was the lowest (F=299.57, P<0.05). In vivo experiments had shown that nanocomposites/si-P3H4/laser have the most significant inhibitory effect on tumor cell enhancement.

Conclusions

Nanocarriers can simultaneously target si-P3H4 and Ce6 into bladder cancer cells to inhibit cell proliferation and achieve comprehensive treatment of bladder cancer. Photodynamics and gene therapy have complementary advantages in the field of bladder cancer treatment. The combination of the two can achieve synergistic enhancement of tumor treatment and can be applied to the treatment of bladder urothelial carcinoma.

图1 RT-qPCR和Western Blot检测P3H4敲低的转染效果
图2 CCK8实验检测P3H4的表达降低对EJ和T24细胞增殖的影响注:图a为EJ组CCK8实验结果,图b为T24组CCK8实验结果
图3 划痕实验、Transwell验证EJ和T24细胞的迁移和侵袭能力
图4 荧光染色提示siP3H4成功负载到多肽载体注:FAM标记为绿色,纳米探针标记为蓝色;图示siP3H4成功负载到多肽载体且具有良好的渗透性
图5 荧光染色提示Ce6成功负载到纳米药物  图6 纳米复合物成像示意图注:图5示Ce6成功负载到纳米药物上且与游离的Ce6相比,具有更好的渗透性和传递效率;图6示小干扰RNA上的FAM信号与Ce6的荧光信号重叠,说明纳米复合物成功包裹si-P3H4和Ce6,可以同时将si-P3P4和Ce6靶向运输至膀胱癌细胞中
图7 纳米复合物光照产生单线态氧(1O2)注:用DCFH-DA荧光探针对1O2进行检测,光照之后,Ce6引起细胞内活性氧水平上升,DCF通道现明显绿色荧光
图8 激光照射对药物释放的作用
图9 膀胱癌细胞cRGD受体αvβ3的表达注:图a示纳米探针@siP3H4成像(蓝色)与cRGD受体αvβ3(红色)靶向结合,与正常细胞无明显结合;图b示无靶向性的对照基团c(RADFK)与膀胱癌细胞结合率低
图10 CCK-8测试不同分组纳米复合物在光照射作用下对膀胱癌细胞的毒性
图11 不同分组纳米复合物对肿瘤体积的抑制
[1]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020[J]. CA Cancer J Clin 2020, 70(1): 7-30.
[2]
Wang F, Dong X, Yang F, et al. Comparative analysis of differentially mutated genes in non-muscle and muscle-invasive bladder cancer in the chinese population by whole exome sequencing[J]. Front Genet, 2022, 13: 831146.
[3]
Xu YD, Luo C, Wang JQ, et al. Application of nanotechnology in the diagnosis and treatment of bladder cancer[J]. J Nanobiotechnology, 2021, 19 (1): 393.
[4]
Li WP, Yen CJ, Wu BS, et al. Recent advances in photodynamic therapy for deep-seated tumors with the aid of nanomedicine[J]. Biomedicines, 2021, 9 (1): 69.
[5]
Railkar R, Agarwal PK. Photodynamic therapy in the treatment of bladder cancer: past challenges and current innovations[J]. Eur Urol Focus, 2018, 4(4): 509-511.
[6]
Zhuo Z, Song Z, Ma Z, et al. Chlorophylline6-mediated photodynamic therapy inhibits proliferation and induces apoptosis in human bladder cancer cells[J]. Oncol Rep, 2019, 41(4): 41(4):2181-2193.
[7]
Kustov AV, Smirnova NL, Privalov OA, et al. Transurethral resection of non- muscle invasive bladder tumors combined with fluorescence diagnosis and photodynamic therapy with chlorine 6-type photosensitizers[J]. J Clin Med, 2021, 11(1): 233.
[8]
Railkar R, Agarwal PK. Photodynamic therapy in the treatment of bladder cancer: past challenges and current innovations[J]. Eur Urol Focus, 2018, 4(4): 509-511.
[9]
Lin T, Zhao X, Zhao S, et al. O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia[J]. Theranostics, 2018, 8(4): 990-1004.
[10]
Audenet F, Attalla K, Sfakianos JP. The evolution of bladder cancer genomics: What have we learned and how can we use it?[J]. Urol Oncol, 2018, 36(7): 313-320.
[11]
Li WJ, Ye LH, Chen YL, et al. P3H4 is correlated with clinicopatho -logical features and prognosis in bladder cancer[J]. World J Surg Oncol, 2018, 16 (1): 206.
[12]
Hao L, Pang K, Pang H, et al. Knockdown of P3H4 inhibits proliferation and invasion of bladder cancer[J]. Aging (Albany NY), 2020, 12(3): 2156-2168.
[13]
Chen Z, Liu G, Hossain A, et al. A co-expression network for differentially expressed genes in bladder cancer and a risk score model for predicting survival[J]. Hereditas, 2019, 156: 24.
[14]
Chen L, Chen C, Chen W, et al. Biodegradable black phosphorus nanosheets mediate specific delivery of htert sirna for synergistic cancer therapy[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21137-21148.
[15]
Kubrak T, Karakuła M, Czop M, et al. Advances in management of bladder cancer-the role of photodynamic therapy[J]. Molecules, 2022, 27(3): 731.
[16]
Miyake M, Nishimura N, Nakai Y, et al. Photodynamic diagnosis-assisted transurethral resection using oral 5-aminolevulinic acid decreases the risk of repeated recurrence in non-muscle-invasive bladder cancer: a cumulative incidence analysis by the person-time method[J]. Diagnostics (Basel), 2021, 11(2): 185.
[17]
Tyson MD, Lee D, Clark P. New developments in the management of nonmuscle invasive bladder cancer[J]. Curr Opin Oncol, 2017, 29(3): 179-183.
[18]
Lin TY, Li Y, Liu Q, et al. Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer[J]. Biomaterials, 2016, 104(10): 339-351.
[19]
Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy[J]. Nat Rev Drug Dicsov, 2019, 18(3): 175-196.
[20]
Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Dicsovery, 2019, 18(3): 175-196.
[21]
Lykke MR, Nielsen TK, Ebbensgaard NA, et al. Reducing recurrence in non -muscle -invasive bladder cancer using photodynamic diagnosis and immediate post-transurethral resection of the bladder chemoprophylaxis[J]. Scand J Urol, 2015, 49(3): 49(3): 230-236.
[22]
Tomlinson B, Lin TY, Dall'Era M, et al. Nanotechnology in bladder cancer: current state of development and clinical practice[J]. Nanomedicine (Lond) 2015, 10(7): 1189-201.
[23]
Liu H, Mei C, Deng X, et al. Rapid visualizing and pathological grading of bladder tumor tissues by simple nano diagnostics[J]. Biomaterials, 2021, 264: 120434.
[1] 张玉, 薛文瑞, 王鑫, 李旭瑜, 王旭东, 袁鹏飞, 梁雨润, 韩志兴, 张海建, 刘庆军, 纪世琪. 人类免疫缺陷病毒感染合并膀胱癌14例临床特点[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 354-358.
[2] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[3] 彭龙飞, 汪鑫, 夏典, 颜松柏, 王进有, 毕良宽. 腹腔镜下腹膜外膀胱根治和原位新膀胱术的初步体会[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(01): 7-10.
[4] 邰胜, 周骏, 施浩强, 杨诚, 尹水平, 牛迪, 郝宗耀, 傅强, 梁朝朝. 无线智能腔镜在腹腔镜膀胱癌根治术中的运用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(01): 22-25.
[5] 赵永录, 张兴盛, 宋广智, 黄斌, 张斌, 顾鹏守, 刘国淦. 经尿道二次电切在pT1期非肌层浸润性膀胱癌的预后价值研究[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 316-319.
[6] 肖东明, 刘硕儒, 张斌, 李茂胤, 黄文涛, 张浩, 胡成. 腹腔镜膀胱癌根治术尿道改流留置外、内支架管与无管化的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 198-203.
[7] 刘天琦, 张振辉, 刘豪圣, 方建雄, 赵超, 刘久敏, 蒲小勇. 腹腔镜下膀胱癌根治术中完全腹膜外经皮输尿管造口术[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(02): 169-172.
[8] 朱金海, 左泽平, 宇洪涛, 钱俊杰. 术前外周血中淋巴细胞与单核细胞比值对高危非肌层浸润性膀胱癌预后的评估价值[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(02): 124-127.
[9] 杨红霞, 龙喜花, 罗朝霞. 高原地区术中低体温对非肌层浸润性膀胱癌患者术后免疫功能和远期复发的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(05): 396-400.
[10] 陈令秋, 王鹏, 袁龙平, 乙从亮. 二次电切术在T2期膀胱癌保留膀胱综合治疗中的临床意义[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(04): 325-329.
[11] 罗标, 姜福全, 刘鑫, 李宏岩. 腹腔镜治疗双原发膀胱癌及乙状结肠癌一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(03): 258-259.
[12] 游成宇, 彭磊, 韦堂墙, 王辉, 王安果. 经尿道铥激光切除术治疗非肌层浸润性膀胱癌的荟萃分析[J]. 中华腔镜泌尿外科杂志(电子版), 2021, 15(03): 209-214.
[13] 翁铭芳, 刘容, 魏俊杰, 林琴, 孙星慧, 王栋, 吴卫真. 补骨脂素抑制膀胱癌T24细胞增殖和迁移的作用及机制研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 193-199.
[14] 邓凌钢, 孙建明, 陈晓峰. FBXO6介导的ERO1L泛素化降解对膀胱癌细胞增殖、迁移和侵袭的作用研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 153-160.
[15] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
阅读次数
全文


摘要