切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2026, Vol. 20 ›› Issue (01) : 56 -64. doi: 10.3877/cma.j.issn.1674-3253.2026.01.008

临床研究

瘤体-瘤周细胞外容积模型对前列腺癌的诊断价值
李勇义1, 赵均雄1, 郭建东1, 李文萱2, 孟占鳌2, 覃杰2, 陈涵潇2,()   
  1. 1518034 深圳,广州中医药大学深圳医院放射科
    2510630 广州,中山大学附属第三医院放射科
  • 收稿日期:2025-09-12 出版日期:2026-02-01
  • 通信作者: 陈涵潇
  • 基金资助:
    广东省自然科学基金(2017A030313841); 国家自然科学基金医院培育项目(2021GZRPYM06); 中山大学第三附属医院五五项目(2023WW605)

Diagnostic value of an intratumor-peritumor extracellular volume model in prostate cancer

Yongyi Li1, Junxiong Zhao1, Jiandong Guo1, Wenxuan Li2, Zhan'ao Meng2, Jie Qin2, Hanxiao Chen2,()   

  1. 1Department of Radiology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
    2Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2025-09-12 Published:2026-02-01
  • Corresponding author: Hanxiao Chen
引用本文:

李勇义, 赵均雄, 郭建东, 李文萱, 孟占鳌, 覃杰, 陈涵潇. 瘤体-瘤周细胞外容积模型对前列腺癌的诊断价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 56-64.

Yongyi Li, Junxiong Zhao, Jiandong Guo, Wenxuan Li, Zhan'ao Meng, Jie Qin, Hanxiao Chen. Diagnostic value of an intratumor-peritumor extracellular volume model in prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2026, 20(01): 56-64.

目的

探讨基于瘤体(I)及瘤周(P)双区域构建的细胞外容积(ECV)模型(ECV-IP)对前列腺癌(PCa)的诊断价值,并验证瘤周ECV(ECV-P)通过调控瘤内微环境间接驱动肿瘤恶性进展的作用机制。

方法

回顾性纳入117例前列腺疾病患者(BPH 63例,PCa 54例),平均年龄(69.67±8.64)岁。比较两组影像参数包括瘤体表观扩散系数(ADC-I)、瘤周表观扩散系数(ADC-P)、瘤体ECV(ECV-I)、ECV-P、ECV-IP等,通过二元逻辑回归建模,ROC曲线(DeLong检验)、5折交叉验证评估模型诊断效能,Bootstrap中介效应模型(5 000次抽样)验证ECV-P驱动肿瘤恶性进展的机制。

结果

ECV-IP诊断PCa的ROC曲线下面积(AUC)达0.883(95%CI:0.800~0.941),灵敏度87.2%,特异度83.0%,显著优于单区域参数(ECV-I:AUC=0.854,P=0.017;ADC-I:AUC=0.797,P=0.032)、PSA(AUC=0.775,P=0.002)、ADC-IP(AUC=0.810,P<0.001)。5折交叉验证示ECV-IP在训练集(AUC=0.865,准确率85.6%)和测试集(AUC=0.889,准确率70.6%)均保持较高诊断性能。PCa组ECV-P显著低于BPH组[0.28(0.17,0.38) vs 0.36(0.25,0.49),P=0.045],且与瘤体ADC-I呈正相关(r=0.278,P=0.007)。中介效应验证ECV-P上升1单位,ADC-I上升256.945×10-6 mm2/s(P=0.027);ADC-I下降100×10-6 mm2/s,恶性风险上升(β=-0.001,P<0.001),间接效应显著,即ECV-P通过ADC-I影响PCa的路径贡献度59.2%(β=-0.294,P=0.048),而直接效应不显著(P=0.366),证实ECV-P通过下调瘤体水分子扩散间接驱动恶性进展。

结论

ECV-IP作为双区域整合指标,通过捕捉瘤体-瘤周微环境交互特征,显著提升PCa诊断效能,优于传统单区域参数及PSA;在影像学层面验证"ECV-P通过影响ADC-I而导致PCa恶性进展"的间接调控机制,为靶向肿瘤微环境提供了新型无创生物标志物。

Objective

To investigate the diagnostic value of an extracellular volume (ECV) model integrating intratumoral(I) and peritumoral (P) regions (ECV-IP) for prostate cancer (PCa), and to validate the mechanism by which peritumoral ECV (ECV-P) indirectly drives malignant progression via modulation of the intratumoral microenvironment.

Methods

A retrospective study was conducted on 117 patients with prostatic disease, 63 cases of benign prostatic hyperplasia (BPH), 54 cases of PCa, the age of patients was (69.67±8.64) years. Imaging parameters including intratumoral apparent diffusion coefficient (ADC-I), peritumoral apparent diffusion coefficient (ADC-P), intratumoral extracellular volume (ECV-I), ECV-P, ECV-IP were compared. Diagnostic performance was evaluated using binary logistic regression modeling, receiver operating characteristic (ROC) curves with DeLong's test, 5-fold cross-validation, and the underlying mechanism was assessed via bootstrap-mediated effect analysis (5 000 resamples).

Results

The ECV-IP model achieved an AUC of 0.883 (95%CI: 0.800-0.941) for PCa diagnosis, with a sensitivity of 87.2% and a specificity of 83.0%. It demonstrated significantly superior diagnostic performance compared to single-region parameters (ECV-I: AUC=0.854, P=0.017; ADC-I: AUC=0.797, P=0.032), PSA (AUC=0.775, P=0.002), and the ADC-IP model (AUC=0.810, P<0.001). Cross-validation demonstrated robust performance: training set (AUC=0.865, accuracy=85.6%); test set (AUC=0.889, accuracy=70.6%). ECV-P was significantly lower in PCa than BPH [0.28 (0.17, 0.38) vs 0.36 (0.25, 0.49), P=0.045] and showed a positive correlation with intratumoral ADC-I (r=0.278, P=0.007). A 1-unit increase in ECV-P increased ADC-I by 256.945×10-6mm2/s (P=0.027). A decrease of 100×10-6 mm2/s in ADC-I increased malignant risk (β=-0.001, P<0.001).The indirect effect of ECV-P on PCa progression mediated by ADC-I was significant (β=-0.294, 95%CI: -0.626 to -0.049, P=0.048; proportion mediated: 59.2%). The direct effect of ECV-P on PCa was non-significant (P=0.366). This validates that ECV-P indirectly drives malignant progression of tumors by down-regulating the diffusion of water molecules.

Conclusion

The ECV-IP model, as a dual-region approach, significantly enhances PCa diagnostic accuracy over conventional single-region parameters and PSA.This study provides the first imaging-based validation of the "ECV-P leads to the malignant progression of PCa by influencing ADC-I" indirect regulatory mechanism, establishing ECV-IP as a novel non-invasive biomarker for targeting the prostate cancer tumor microenvironment.

图1 瘤体-瘤周双区域弥散加权模型(ADC-IP)和双区域细胞外容积模型(ECV-IP)勾画感兴趣区域策略及案例展示注:图a~e为同一BPH患者(年龄65岁)动态增强5 min时相、平扫(蒙片)、弥散加权表观扩散系数(ADC)图、动态增强曲线、病理图(HE×400);图f~j为同一PCa患者(年龄61岁)动态增强5 min时相、平扫(蒙片)、弥散加权ADC图、动态增强曲线、病理图(HE×400);基于勾画参数和公式,BPH患者ADC-I、ADC-P高于PCa患者,BPH患者ECV-I(0.54)、ECV-P(0.36)高于PCa患者ECV-I(0.24)、ECV-P(0.31);动态增强曲线BPH患者呈流入型,PCa患者呈流出型,均与病理结果一致;ADC-I和ADC-P分别为瘤体、瘤周弥散加权系数,ECV-I、ECV-P分别为瘤体、瘤周细胞外容积
表1 117例前列腺疾病患者基线特征
表2 前列腺疾病患者核心指标与病理结果皮尔逊相关性分析
表3 BPH组与PCa组核心指标比较[MQ)]
表4 各指标诊断前列腺癌的受试者工作特征曲线分析
指标 AUC值(95%CI 灵敏度(95%CI 特异度(95%CI 约登指数(95%CI
PSA 0.775 (0.658~0.847) 0.641 (0.401~0.842) 0.830 (0.599~0.981) 0.471 (0.364~0.619)
ADC-I 0.797 (0.712~0.905) 0.792 (0.717~0.977) 0.744 (0.527~0.907) 0.536 (0.408~0.779)
ADC-P 0.548 (0.396~0.648) 0.849 (0.146~0.976) 0.282 (0.108~0.973) 0.131 (0.055~0.278)
ECV-I 0.854 (0.787~0.928) 0.755 (0.560~0.906) 0.846 (0.711~0.977) 0.601 (0.500~0.784)
ECV-P 0.674 (0.541~0.786) 0.491 (0.330~0.896) 0.846 (0.477~0.964) 0.337 (0.191~0.482)
SER-I 0.720 (0.636~0.824) 0.795 (0.629~0.922) 0.642 (0.568~0.811) 0.436 (0.299~0.600)
SER-P 0.528 (0.431~0.626) 0.462 (0.092~0.959) 0.660 (0.155~0.991) 0.122 (0.057~0.293)
MSI-I 0.568 (0.468~0.684) 0.231 (0.228~1.000) 0.943 (0.146~0.981) 0.174 (0.126~0.359)
MSI-P 0.524 (0.404~0.619) 0.385 (0.153~1.000) 0.774 (0.088~0.972) 0.158 (0.056~0.304)
MSD-I 0.627 (0.552~0.723) 0.282 (0.225~0.926) 0.943 (0.295~1.000) 0.225 (0.181~0.385)
MSD-P 0.517 (0.392~0.575) 0.179 (0.093~0.883) 0.981 (0.253~1.000) 0.161 (0.068~0.267)
ADC-IP 0.810 (0.740~0.896) 0.641 (0.541~0.835) 0.925 (0.819~0.996) 0.566 (0.441~0.721)
ECV-IP 0.883 (0.800~0.941) 0.872 (0.714~0.978) 0.830 (0.691~0.964) 0.702 (0.546~0.845)
指标 最佳阈值(95%CI 准确度(95%CI Z P
PSA 18.791 (7.876~39.599) 0.585 (0.492~0.693) 1.734 0.002
ADC-I 748.000 (651.000~750.000) 0.424 (0.320~0.519) 10.527 0.032
ADC-P 1059.070 (857.990~1503.470) 0.432 (0.337~0.539) 5.464 <0.001
ECV-I 0.248 (0.184~0.328) 0.805 (0.717~0.886) 10.242 0.017
ECV-P 0.403 (0.250~0.461) 0.650 (0.529~0.737) 7.691 <0.001
SER-I 2.750 (2.750~4.462) 0.584 (0.502~0.667) 2.506 0.012
SER-P 4.310 (1.269~16.604) 0.573 (0.470~0.650) 5.300 <0.001
MSI-I 538.500 (100.750~603.143) 0.576 (0.470~0.671) 4.011 <0.001
MSI-P 241.130 (54.920~331.460) 0.570 (0.481~0.661) 4.551 <0.001
MSD-I 90.750 (20.536~131.170) 0.573 (0.470~0.663) 3.356 0.001
MSD-P 79.320 (19.780~93.726) 0.563 (0.472~0.680) 4.459 <0.001
ADC-IP 0.614 (0.450 ~0.647) 0.810 (0.742~0.878) 1.260 <0.001
ECV-IP 0.465 (0.379~0.576) 0.865 (0.782~0.913) - -
表5 ECV-IP、ADC-IP和PSA三个模型交叉验证结果
图2 ECV-P影响PCa进展的中介分析路径图注:ECV-P通过中介变量ADC-I间接推动恶性进展,间接效应比例59.2%,揭示了瘤周微环境(细胞外容积)通过瘤体水分子受限(细胞密度)对前列腺恶性进展的潜在作用
表6 ECV-P影响PCa进展的中介效应分析
[1]
Lowrance W, Dreicer R, Jarrard DF, et al. Updates to advanced prostate cancer: AUA/SUO guideline (2023)[J]. J Urol, 2023, 209(6): 1082-1090. DOI: 10.1097/JU.0000000000003452.
[2]
Sekhoacha M, Riet K, Motloung P, et al. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches[J]. Molecules, 2022, 27(17): 5730. DOI: 10.3390/molecules27175730.
[3]
Breidablik HJ, Meland E, Aakre KM, et al. PSA measurement and prostate cancer—overdiagnosis and overtreatment?[J]. Tidsskr Nor Laegeforen, 2013, 133(16): 1711-1716. DOI: 10.4045/tidsskr.13.0023.
[4]
Cornford P, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer-2024 update. part I: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2024, 86(2): 148-163. DOI: 10.1016/j.eururo.2024.03.027.
[5]
Grivas N, Lardas M, Espinós EL, et al. Prostate cancer detection percentages of repeat biopsy in patients with positive multiparametric magnetic resonance imaging (prostate imaging reporting and data system/likert 3-5) and negative initial biopsy. a mini systematic review[J]. Eur Urol, 2022, 82(5): 452-457. DOI: 10.1016/j.eururo.2022.07.025.
[6]
Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[7]
Kumar V, Bora GS, Kumar R, et al. Multiparametric (mp) MRI of prostate cancer[J]. Prog Nucl Magn Reson Spectrosc, 2018, 105: 23-40. DOI: 10.1016/j.pnmrs.2018.01.001.
[8]
Bengtsson J, Thimansson E, Baubeta E, et al. Correlation between ADC, ADC ratio, and Gleason Grade group in prostate cancer patients undergoing radical prostatectomy: Retrospective multicenter study with different MRI scanners[J]. Front Oncol, 2023, 13: 1079040. DOI: 10.3389/fonc.2023.1079040.
[9]
Lucarelli NM, Villanova I, Maggialetti N, et al. Quantitative ADC: an additional tool in the evaluation of prostate cancer?[J]. J Pers Med, 2023, 13(9): 1378. DOI: 10.3390/jpm13091378.
[10]
Møller JM, Boesen L, Hansen AE, et al. Quantification of cross-vendor variation in ADC measurements in vendor-specific prostate MRI-protocols[J]. Eur J Radiol, 2023, 165: 110942. DOI: 10.1016/j.ejrad.2023.110942.
[11]
Wei Z, Iluppangama M, Qi J, et al. Quantitative DCE dynamics on transformed MR imaging discriminates clinically significant prostate cancer[J]. Cancer Control, 2024, 31: 10732748241298539. DOI: 10.1177/10732748241298539.
[12]
Zhang Y, Li W, Zhang Z, et al. Differential diagnosis of prostate cancer and benign prostatic hyperplasia based on DCE-MRI using bi-directional CLSTM deep learning and radiomics[J]. Med Biol Eng Comput, 2023, 61(3): 757-771. DOI: 10.1007/s11517-022-02759-x.
[13]
Bian X, Wang W, Abudurexiti M, et al. Integration analysis of single-cell multi-omics reveals prostate cancer heterogeneity[J]. Adv Sci, 2024, 11(18): 2305724. DOI: 10.1002/advs.202305724.
[14]
Chang CC, Lin CY, Chu CY, et al. Extracellular volume fraction measurement correlates with lymphocyte abundance in thymic epithelial tumors[J]. Cancer Imaging, 2020, 20(1): 71. DOI: 10.1186/s40644-020-00349-4.
[15]
Chang S, Fan X, Ma Y, et al. Decoupling iterative algorithm for rapid calculation of physiological parameters from the standard Tofts model[J]. Med Phys, 2025, 52(8): e18043. DOI: 10.1002/mp.18043.
[16]
Fukukura Y, Kumagae Y, Fujisaki Y, et al. Extracellular volume fraction with MRI: as an alternative predictive biomarker to dynamic contrast-enhanced MRI for chemotherapy response of pancreatic ductal adenocarcinoma[J]. Eur J Radiol, 2021, 145: 110036. DOI: 10.1016/j.ejrad.2021.110036.
[17]
ChallaSivaKanaka S, Vickman RE, Kakarla M, et al. Fibroblast heterogeneity in prostate carcinogenesis[J]. Cancer Lett, 2022, 525: 76-83. DOI: 10.1016/j.canlet.2021.10.028.
[18]
Qiu Y, Liu YF, Shu X, et al. Peritumoral radiomics strategy based on ensemble learning for the prediction of gleason grade group of prostate cancer[J]. Acad Radiol, 2023, 30(Suppl 1): S1-S13. DOI: 10.1016/j.acra.2023.06.011.
[19]
Wang X, Du L, Cao Y, et al. Comparing extracellular volume fraction with apparent diffusion coefficient for the characterization of breast tumors[J]. Eur J Radiol, 2024, 171: 111268. DOI: 10.1016/j.ejrad.2023.111268.
[20]
Cox TR. The matrix in cancer[J]. Nat Rev Cancer, 2021, 21(4): 217-238. DOI: 10.1038/s41568-020-00329-7.
[21]
Bhome R, Emaduddin M, James V, et al. Epithelial to mesenchymal transition influences fibroblast phenotype in colorectal cancer by altering miR-200 levels in extracellular vesicles[J]. J Extracell Vesicles, 2022, 11(5): e12226. DOI: 10.1002/jev2.12226.
[22]
Jiang Y, Zhang H, Wang J, et al. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy[J]. J Hematol Oncol, 2022, 15(1): 34. DOI: 10.1186/s13045-022-01252-0.
[23]
Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features[J]. Radiology, 2010, 255(2): 485-494. DOI: 10.1148/radiol.10091343.
[24]
Plava J, Cihova M, Burikova M, et al. Recent advances in understanding tumor stroma-mediated chemoresistance in breast cancer[J]. Mol Cancer, 2019, 18(1): 67. DOI: 10.1186/s12943-019-0960-z.
[25]
Turkbey B, Purysko AS. PI-RADS: where next?[J]. Radiology, 2023, 307(5): e223128. DOI: 10.1148/radiol.223128.
[1] 李雨秋, 莫红楠. 乳腺癌肿瘤微环境特征及免疫治疗新进展[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(06): 331-338.
[2] 梅昊楠, 杨瑞, 刘修恒. 人工智能辅助病理学图像分析在前列腺癌诊断中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 1-7.
[3] 蒋钟吉, 郭洪, 王东文. 近红外显影技术在前列腺癌淋巴组织显影及病理评估中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 8-14.
[4] 胡博文, 胡亚兰, 梁辉. 前列腺癌早期筛查的常见方法及最新研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 800-808.
[5] 田超, 黄若曦, 蒋茂林, 谢崇伟, 刁鹏飞, 钟苏权, 陈东, 王航涛, 陈桂柳, 陈虞娟, 李国良. 不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 727-735.
[6] 孟维妮, 管旌旌, 刘敏, 王晓雪, 王海凤. 机器人辅助腹腔镜前列腺根治性切除术后合并多种并发症的护理体会[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 765-771.
[7] 陈思鹭, 杨兴, 李学松, 谌诚. 靶向PSMA的荧光探针在前列腺癌显像中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 547-551.
[8] 潘麒文, 何立儒. 前列腺癌放射治疗前沿进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 552-557.
[9] 杨硕, 郭佳. 液体活检在前列腺癌进展监测中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 558-564.
[10] 陈育纯, 王倩倩, 彭天明, 李勇, 田凯文, 刘志烨, 吴坤林, 蒲小勇, 刘久敏. 基于GEO数据库探究前列腺癌淋巴结转移和内脏转移中基因差异及预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 579-585.
[11] 余琪伟, 王省博, 姚林亚, 张曦, 吴余凡, 曾学明, 曾庆琪. 经皮胫神经刺激联合索利那新治疗前列腺癌根治术后膀胱功能障碍的疗效观察[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 586-592.
[12] 李玉志, 叶春伟, 杨斌, 杨德林. 机器人辅助下前列腺癌根治术后尿控影响因素的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 658-662.
[13] 李昊, 邰胜, 杨诚, 王宏志, 岳家斌, 孟佳林, 梁朝朝. 国产单孔机器人辅助腹腔镜根治性前列腺切除术的初步应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 565-571.
[14] 宋柯瑾, 李文星. 肿瘤相关中性粒细胞在结直肠癌中的双重调控作用及临床意义[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(06): 546-551.
[15] 武世伦, 姚常玉, 许力, 狄治杉, 夏奇, 孙文兵, 孔健. 肿瘤相关巨噬细胞在肝细胞癌血管新生中的作用及研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 388-391.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?