切换至 "中华医学电子期刊资源库"

中华腔镜泌尿外科杂志(电子版) ›› 2026, Vol. 20 ›› Issue (01) : 95 -101. doi: 10.3877/cma.j.issn.1674-3253.2026.01.014

实验研究

靶向SOAT1对前列腺癌的作用和机制研究
刘辉1,2, 谢周洲3, 周晓琪3, 张桂豪3, 江惠明3, 陈南辉1,3,()   
  1. 1514031 广东,汕头大学医学院附属梅州医院泌尿外科
    2514799 广东梅州,中山大学附属第三医院粤东医院泌尿外科
    3514031 广东,梅州市人民医院泌尿外科
  • 收稿日期:2025-11-03 出版日期:2026-02-01
  • 通信作者: 陈南辉
  • 基金资助:
    广东省基础与应用基础研究基金(2023A1515220113); 梅州市人民医院培育项目(PY-C2025011)

The role and mechanisms of targeting SOAT1 in prostate cancer

Hui Liu1,2, Zhouzhou Xie3, Xiaoqi Zhou3, Guihao Zhang3, Huiming Jiang3, Nanhui Chen1,3,()   

  1. 1Department of Urology, Affiliated Meizhou Hospital of Shantou University Medical College, Guangdong 514031, China
    2Department of Urology, Yuedong Hospital, Third Affiliated Hospital of Sun Yat-sen University, Meizhou 514799, China
    3Department of Urology, Meizhou People's Hospital, Guangdong 514031, China
  • Received:2025-11-03 Published:2026-02-01
  • Corresponding author: Nanhui Chen
引用本文:

刘辉, 谢周洲, 周晓琪, 张桂豪, 江惠明, 陈南辉. 靶向SOAT1对前列腺癌的作用和机制研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 95-101.

Hui Liu, Zhouzhou Xie, Xiaoqi Zhou, Guihao Zhang, Huiming Jiang, Nanhui Chen. The role and mechanisms of targeting SOAT1 in prostate cancer[J/OL]. Chinese Journal of Endourology(Electronic Edition), 2026, 20(01): 95-101.

目的

探讨SOAT1基因表达在前列腺癌发生发展中的作用及机制。

方法

分别使用TCGA临床数据集、前列腺癌细胞系分析和验证SOAT1基因的表达情况。基因表达、甲基化水平和生存分析了解SOAT1基因表达与前列腺癌患者预后的相关性。CRISPR-Cas9技术建立基因敲除细胞株,蛋白免疫印迹检验基因表达水平,MTS、克隆形成实验和Transwell等分析细胞增殖和迁移的能力。荧光定量聚合酶链反应、蛋白免疫印迹、高分辨质谱和细胞能量代谢等分析SOAT1基因在前列腺癌细胞中的作用和分子机制。

结果

SOAT1在前列腺癌组织中表达升高(P<0.05),高表达SOAT1基因的患者生存率下降。SOAT1表达不受雄激素受体信号通路调控,与获得性去势抵抗的过程无关(P>0.05)。敲除SOAT1基因通过减少线粒体代谢(氧耗呼吸值下降约45%,三磷酸腺苷生成减少约55%)抑制前列腺癌细胞的增殖,并不依赖雄激素代谢途径。

结论

靶向敲除SOAT1可以通过降低线粒体代谢抑制前列腺癌细胞增殖、上皮-间质转化和肿瘤干性,能够作为潜在的治疗靶点。

Objective

To investigate the role and mechanisms of SOAT1 gene expression in the development and progression of prostate cancer.

Methods

The expression of the SOAT1 gene was analyzed based on TCGA datasets and validated in prostate cancer cell lines. The correlation between SOAT1 gene expression and patient prognosis in prostate cancer was assessed through gene expression, methylation levels, and survival analysis. A gene knockout cell line was established using CRISPR-Cas9 technology, and gene expression levels were verified by Western blot. Cell proliferation and migration abilities were analyzed using MTS, colony formation, and transwell assays. The role and molecular mechanisms of SOAT1 in prostate cancer cells were further investigated through quantitative real-time polymerase chain reaction, Western blot, high-resolution mass spectrometry, and cellular energy metabolism experiments.

Results

SOAT1 expression was upregulated in prostate cancer tissues (P<0.05), and high SOAT1 expression was associated with decreased patient survival. SOAT1 expression was not regulated by the androgen receptor signaling pathway and was unrelated to the process of acquired castration resistance (P>0.05). Knockout of SOAT1 inhibited prostate cancer cell proliferation by reducing mitochondrial metabolism (approximately 45% decrease in oxygen consumption and 55% reduction in production of adenosine triphosphate), independent of the androgen metabolic pathway.

Conclusion

Targeted knockout of SOAT1 can inhibit prostate cancer cell proliferation, epithelial-mesenchymal transition (EMT), and tumor stemness by reducing mitochondrial metabolism, suggesting its potential as a therapeutic target.

图1 PCa和正常前列腺组织SOAT1基因表达情况及与预后的关系注:a为通过UALCAN在线平台分析TCGA-PRAD数据集中SOAT1基因在前列腺癌(PCa)组织中的表达;b为PCa组织中SOAT1甲基化水平降低;c示高表达SOAT1 PCa患者生存率下降但不显著;*示P<0.05
图2 PCa细胞中SOAT1基因表达与雄激素信号途径的关系注:a为基因SOAT1在前列腺癌细胞和正常前列腺上皮细胞(PWR-1E)中的mRNA相对表达水平分析;b为基因SOAT1在前列腺癌细胞和正常前列腺上皮细胞(RWPE-1)中的蛋白表达水平;c为荧光定量PCR实验分析雄激素依赖PCa细胞系(LNCaP)和非雄激素依赖PCa细胞系(C4、C4-2、C4-2B)中SOAT1的表达;d为蛋白免疫印迹实验检测SOAT1的表达水平;ns为差异无统计学意义(P>0.05)
图3 敲除SOAT1对PCa细胞增殖的影响注:a为蛋白免疫印迹实验验证SOAT1基因敲除;b为细胞增殖实验分析SOAT1敲除对PCa细胞的影响;c为克隆形成实验检测敲除SOAT1对PCa细胞的抑制作用;d为柱状图统计分析克隆数量;22RV1和PC3为PCa细胞系;***P<0.001
图4 靶向SOAT1对PCa细胞上皮-间质转化和肿瘤干性的影响注:a为transwell实验分析敲除SOAT1基因抑制PCa细胞的迁移能力;b为柱状图统计分析SOAT1敲除对PCa细胞迁移的影响;c为荧光定量PCR实验检测敲除SOAT1对PCa细胞肿瘤干性相关标记物的影响;d为蛋白免疫印迹实验检测SOAT1敲除细胞的上皮-间质转化相关标记物变化;***P<0.001
图5 敲除SOAT1抑制PCa细胞增殖的机制注:a为胆固醇从头合成和雄激素生成途径示意图;b为细胞增殖实验分析二氢睾酮、醋酸阿比特龙和恩扎鲁胺对SOAT1敲除PCa细胞增殖能力的影响;c为高分辨质谱检测胆固醇合成途径相应代谢物(IPP、FPP、CoQ10)等的含量变化;d为能量代谢分析显示CoQ10对SOAT1敲除PCa细胞线粒体氧耗量的影响;e为柱状图统计CoQ10对SOAT1敲除PCa细胞线粒体基础呼吸和三磷酸腺苷生成能力的影响;f为细胞增殖实验分析CoQ10对SOAT1敲除PCa细胞增殖的影响;FPP为法尼基焦磷酸,IPP为异戊烯基二磷酸,CoQ10为辅酶Q10;*P<0.05,**P<0.01,***P<0.001
[1]
Chakrabarti D, Albertsen P, Adkins A, et al. The contemporary management of prostate cancer[J]. CA A Cancer J Clinicians, 2025: caac.70020. DOI: 10.3322/caac.70020.
[2]
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[3]
Masson-Lecomte A, Birtle A, Pradere B, et al. European association of urology guidelines on upper urinary tract urothelial carcinoma: summary of the 2025 update[J]. Eur Urol, 2025, 87(6): 697-716. DOI: 10.1016/j.eururo.2025.02.023.
[4]
Zhang R, Yan SY, Wang YY, et al. Analysis of the status and trends of Chinese clinical practice guideline development between 2010 and 2020: a systematic review[J]. Front Med, 2021, 8: 758617. DOI: 10.3389/fmed.2021.758617.
[5]
Wang DQ, Huang Q, Huang X, et al. Knowledge of and compliance with guidelines in the management of non-muscle-invasive bladder cancer: a survey of Chinese urologists[J]. Front Oncol, 2021, 11: 735704. DOI: 10.3389/fonc.2021.735704.
[6]
Chen F, Li H, Wang Y, et al. CHD1 loss reprograms SREBP2-driven cholesterol synthesis to fuel androgen-responsive growth and castration resistance in SPOP-mutated prostate tumors[J]. Nat Cancer, 2025, 6(5): 854-873. DOI: 10.1038/s43018-025-00952-z.
[7]
邱陈玲,李世宝,徐银海. PAX5抑制前列腺癌细胞迁移和侵袭的机制及其临床意义[J]. 徐州医科大学学报, 2024, 44(7): 487-492. DOI:10.3969/j.issn.2096-3882.2024.07.003.
[8]
Linder S, van der Poel HG, Bergman AM, et al. Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond[J]. Endocr Relat Cancer, 2018, 26(1): R31-R52.. DOI: 10.1530/ERC-18-0289 DOI: 10.1530/ERC-18-0289.
[9]
Thakur A, Roy A, Ghosh A, et al. Abiraterone acetate in the treatment of prostate cancer[J]. Biomed Pharmacother, 2018, 101: 211-218. DOI: 10.1016/j.biopha.2018.02.067.
[10]
张蝶, 刘曾晶, 蒙秋霞,等. 基于网络药理学和分子对接探究莪术-三棱药对治疗前列腺癌的作用机制[J]. 数理医药学杂志, 2024, 37(1):22-33. DOI: 10.12173/j.issn.1004-4337.202311132.
[11]
Desai K, McManus JM, Sharifi N. Hormonal therapy for prostate cancer[J]. Endocr Rev, 2021, 42(3): 354-373. DOI: 10.1210/endrev/bnab002.
[12]
Cai M, Song XL, Li XA, et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer[J]. Drug Resist Updat, 2023, 68: 100962. DOI: 10.1016/j.drup.2023.100962.
[13]
Xu H, Zhou S, Tang Q, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188394. DOI: 10.1016/j.bbcan.2020.188394.
[14]
Bairos JA, Njoku U, Zafar M, et al. Sterol O-acyltransferase (SOAT/ACAT) activity is required to form cholesterol crystals in hepatocyte lipid droplets[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2024, 1869(6): 159512. DOI: 10.1016/j.bbalip.2024.159512.
[15]
Fu R, Xue W, Liang J, et al. SOAT1 regulates cholesterol metabolism to induce EMT in hepatocellular carcinoma[J]. Cell Death Dis, 2024, 15(5): 325. DOI: 10.1038/s41419-024-06711-9.
[16]
Zhu Y, Gu L, Lin X, et al. P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis[J]. Hepatology, 2023, 77(5): 1499-1511. DOI: 10.1002/hep.32518.
[17]
Eckhardt C, Sbiera I, Krebs M, et al. High expression of Sterol-O-Acyl transferase 1 (SOAT1), an enzyme involved in cholesterol metabolism, is associated with earlier biochemical recurrence in high risk prostate cancer[J]. Prostate Cancer Prostatic Dis, 2022, 25(3): 484-490. DOI: 10.1038/s41391-021-00431-3.
[18]
Liu JY, Fu WQ, Zheng XJ, et al. Avasimibe exerts anticancer effects on human glioblastoma cells via inducing cell apoptosis and cell cycle arrest[J]. Acta Pharmacol Sin, 2021, 42(1): 97-107. DOI: 10.1038/s41401-020-0404-8.
[19]
Geng F, Cheng X, Wu X, et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis[J]. Clin Cancer Res, 2016, 22(21): 5337-5348. DOI: 10.1158/1078-0432.CCR-15-2973.
[20]
Maki R, Iwagami Y, Kobayashi S, et al. Efficacy of SOAT1 inhibitors against pancreatic cancer with TP53 mutations[J]. Ann Surg Oncol, 2025, 32(9): 7025-7037. DOI: 10.1245/s10434-025-17482-8.
[21]
Xiong K, Wang G, Peng T, et al. The cholesterol esterification inhibitor avasimibe suppresses tumour proliferation and metastasis via the E2F-1 signalling pathway in prostate cancer[J]. Cancer Cell Int, 2021, 21(1): 461. DOI: 10.1186/s12935-021-02175-5.
[22]
Li ZZ, Zhou K, Wu J, et al. Triaptosis and cancer: next hope?[J]. Research, 2025, 8: 880. DOI: 10.34133/research.0880.
[23]
Liu Y, Wang Y, Hao S, et al. Knockdown of sterol O-acyltransferase 1 (SOAT1) suppresses SCD1-mediated lipogenesis and cancer procession in prostate cancer[J]. Prostaglandins Other Lipid Mediat, 2021, 153: 106537. DOI: 10.1016/j.prostaglandins.2021.106537.
[24]
du Preez MJ, Schoonen M, Williams ME, et al. OXPHOS complex deficiency in congenital myopathy: a systematic review[J]. Eur J Clin Invest, 2025, 55(11): e70114. DOI: 10.1111/eci.70114.
[25]
Dakal TC, Bhushan R, Xu C, et al. Intricate relationship between cancer stemness, metastasis, and drug resistance[J]. MedComm, 2024, 5(10): e710. DOI: 10.1002/mco2.710.
[26]
Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype[J]. Crit Rev Oncol Hematol, 2021, 163: 103370. DOI: 10.1016/j.critrevonc.2021.103370.
[27]
Castellón EA, Indo S, Contreras HR. Cancer stemness/epithelial-mesenchymal transition axis influences metastasis and castration resistance in prostate cancer: potential therapeutic target[J]. Int J Mol Sci, 2022, 23(23): 14917. DOI: 10.3390/ijms232314917.
[1] 蒋树云, 马志军, 张旭, 陈棋帅, 耿智华贞. R-spondin 2在乳腺癌中的表达及其对SKBR-3细胞生长转移能力的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(05): 267-274.
[2] 梅昊楠, 杨瑞, 刘修恒. 人工智能辅助病理学图像分析在前列腺癌诊断中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 1-7.
[3] 蒋钟吉, 郭洪, 王东文. 近红外显影技术在前列腺癌淋巴组织显影及病理评估中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 8-14.
[4] 李勇义, 赵均雄, 郭建东, 李文萱, 孟占鳌, 覃杰, 陈涵潇. 瘤体-瘤周细胞外容积模型对前列腺癌的诊断价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 56-64.
[5] 胡博文, 胡亚兰, 梁辉. 前列腺癌早期筛查的常见方法及最新研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 800-808.
[6] 田超, 黄若曦, 蒋茂林, 谢崇伟, 刁鹏飞, 钟苏权, 陈东, 王航涛, 陈桂柳, 陈虞娟, 李国良. 不同亚型前列腺癌新辅助化疗后盆腔淋巴结转移的风险因素及时间分布[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 727-735.
[7] 孟维妮, 管旌旌, 刘敏, 王晓雪, 王海凤. 机器人辅助腹腔镜前列腺根治性切除术后合并多种并发症的护理体会[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 765-771.
[8] 李昊, 邰胜, 杨诚, 王宏志, 岳家斌, 孟佳林, 梁朝朝. 国产单孔机器人辅助腹腔镜根治性前列腺切除术的初步应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 565-571.
[9] 陈思鹭, 杨兴, 李学松, 谌诚. 靶向PSMA的荧光探针在前列腺癌显像中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 547-551.
[10] 潘麒文, 何立儒. 前列腺癌放射治疗前沿进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 552-557.
[11] 杨硕, 郭佳. 液体活检在前列腺癌进展监测中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 558-564.
[12] 陈育纯, 王倩倩, 彭天明, 李勇, 田凯文, 刘志烨, 吴坤林, 蒲小勇, 刘久敏. 基于GEO数据库探究前列腺癌淋巴结转移和内脏转移中基因差异及预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 579-585.
[13] 余琪伟, 王省博, 姚林亚, 张曦, 吴余凡, 曾学明, 曾庆琪. 经皮胫神经刺激联合索利那新治疗前列腺癌根治术后膀胱功能障碍的疗效观察[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 586-592.
[14] 李玉志, 叶春伟, 杨斌, 杨德林. 机器人辅助下前列腺癌根治术后尿控影响因素的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(05): 658-662.
[15] 谭廷武, 张平新, 夏成兴, 杨德林. 单细胞测序技术在前列腺癌免疫治疗中的应用现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 508-513.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?