| [1] |
Chakrabarti D, Albertsen P, Adkins A, et al. The contemporary management of prostate cancer[J]. CA A Cancer J Clinicians, 2025: caac.70020. DOI: 10.3322/caac.70020.
|
| [2] |
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
|
| [3] |
Masson-Lecomte A, Birtle A, Pradere B, et al. European association of urology guidelines on upper urinary tract urothelial carcinoma: summary of the 2025 update[J]. Eur Urol, 2025, 87(6): 697-716. DOI: 10.1016/j.eururo.2025.02.023.
|
| [4] |
Zhang R, Yan SY, Wang YY, et al. Analysis of the status and trends of Chinese clinical practice guideline development between 2010 and 2020: a systematic review[J]. Front Med, 2021, 8: 758617. DOI: 10.3389/fmed.2021.758617.
|
| [5] |
Wang DQ, Huang Q, Huang X, et al. Knowledge of and compliance with guidelines in the management of non-muscle-invasive bladder cancer: a survey of Chinese urologists[J]. Front Oncol, 2021, 11: 735704. DOI: 10.3389/fonc.2021.735704.
|
| [6] |
Chen F, Li H, Wang Y, et al. CHD1 loss reprograms SREBP2-driven cholesterol synthesis to fuel androgen-responsive growth and castration resistance in SPOP-mutated prostate tumors[J]. Nat Cancer, 2025, 6(5): 854-873. DOI: 10.1038/s43018-025-00952-z.
|
| [7] |
|
| [8] |
Linder S, van der Poel HG, Bergman AM, et al. Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond[J]. Endocr Relat Cancer, 2018, 26(1): R31-R52.. DOI: 10.1530/ERC-18-0289 DOI: 10.1530/ERC-18-0289.
|
| [9] |
Thakur A, Roy A, Ghosh A, et al. Abiraterone acetate in the treatment of prostate cancer[J]. Biomed Pharmacother, 2018, 101: 211-218. DOI: 10.1016/j.biopha.2018.02.067.
|
| [10] |
|
| [11] |
Desai K, McManus JM, Sharifi N. Hormonal therapy for prostate cancer[J]. Endocr Rev, 2021, 42(3): 354-373. DOI: 10.1210/endrev/bnab002.
|
| [12] |
Cai M, Song XL, Li XA, et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer[J]. Drug Resist Updat, 2023, 68: 100962. DOI: 10.1016/j.drup.2023.100962.
|
| [13] |
Xu H, Zhou S, Tang Q, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188394. DOI: 10.1016/j.bbcan.2020.188394.
|
| [14] |
Bairos JA, Njoku U, Zafar M, et al. Sterol O-acyltransferase (SOAT/ACAT) activity is required to form cholesterol crystals in hepatocyte lipid droplets[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2024, 1869(6): 159512. DOI: 10.1016/j.bbalip.2024.159512.
|
| [15] |
Fu R, Xue W, Liang J, et al. SOAT1 regulates cholesterol metabolism to induce EMT in hepatocellular carcinoma[J]. Cell Death Dis, 2024, 15(5): 325. DOI: 10.1038/s41419-024-06711-9.
|
| [16] |
Zhu Y, Gu L, Lin X, et al. P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis[J]. Hepatology, 2023, 77(5): 1499-1511. DOI: 10.1002/hep.32518.
|
| [17] |
Eckhardt C, Sbiera I, Krebs M, et al. High expression of Sterol-O-Acyl transferase 1 (SOAT1), an enzyme involved in cholesterol metabolism, is associated with earlier biochemical recurrence in high risk prostate cancer[J]. Prostate Cancer Prostatic Dis, 2022, 25(3): 484-490. DOI: 10.1038/s41391-021-00431-3.
|
| [18] |
Liu JY, Fu WQ, Zheng XJ, et al. Avasimibe exerts anticancer effects on human glioblastoma cells via inducing cell apoptosis and cell cycle arrest[J]. Acta Pharmacol Sin, 2021, 42(1): 97-107. DOI: 10.1038/s41401-020-0404-8.
|
| [19] |
Geng F, Cheng X, Wu X, et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis[J]. Clin Cancer Res, 2016, 22(21): 5337-5348. DOI: 10.1158/1078-0432.CCR-15-2973.
|
| [20] |
Maki R, Iwagami Y, Kobayashi S, et al. Efficacy of SOAT1 inhibitors against pancreatic cancer with TP53 mutations[J]. Ann Surg Oncol, 2025, 32(9): 7025-7037. DOI: 10.1245/s10434-025-17482-8.
|
| [21] |
Xiong K, Wang G, Peng T, et al. The cholesterol esterification inhibitor avasimibe suppresses tumour proliferation and metastasis via the E2F-1 signalling pathway in prostate cancer[J]. Cancer Cell Int, 2021, 21(1): 461. DOI: 10.1186/s12935-021-02175-5.
|
| [22] |
Li ZZ, Zhou K, Wu J, et al. Triaptosis and cancer: next hope?[J]. Research, 2025, 8: 880. DOI: 10.34133/research.0880.
|
| [23] |
Liu Y, Wang Y, Hao S, et al. Knockdown of sterol O-acyltransferase 1 (SOAT1) suppresses SCD1-mediated lipogenesis and cancer procession in prostate cancer[J]. Prostaglandins Other Lipid Mediat, 2021, 153: 106537. DOI: 10.1016/j.prostaglandins.2021.106537.
|
| [24] |
du Preez MJ, Schoonen M, Williams ME, et al. OXPHOS complex deficiency in congenital myopathy: a systematic review[J]. Eur J Clin Invest, 2025, 55(11): e70114. DOI: 10.1111/eci.70114.
|
| [25] |
Dakal TC, Bhushan R, Xu C, et al. Intricate relationship between cancer stemness, metastasis, and drug resistance[J]. MedComm, 2024, 5(10): e710. DOI: 10.1002/mco2.710.
|
| [26] |
Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype[J]. Crit Rev Oncol Hematol, 2021, 163: 103370. DOI: 10.1016/j.critrevonc.2021.103370.
|
| [27] |
Castellón EA, Indo S, Contreras HR. Cancer stemness/epithelial-mesenchymal transition axis influences metastasis and castration resistance in prostate cancer: potential therapeutic target[J]. Int J Mol Sci, 2022, 23(23): 14917. DOI: 10.3390/ijms232314917.
|